- matlab图像融合技术研究
柠檬少少开发
人工智能计算机视觉
目录摘要......................................................................................................................1Abstract.....................................................................
- 2-88 基于matlab的四叉树加权聚焦多聚焦图像融合
'Matlab学习与应用
matlab工程应用matlab人工智能计算机视觉全聚焦图像加权焦点测量方法四叉树加权聚焦多聚焦图像融合
基于matlab的四叉树加权聚焦多聚焦图像融合,的四叉树分解策略将源图像被分解成四叉树结构中具有最佳尺寸的块。在这个树形结构中,使用一种新的加权焦点测量方法(名为加权修正拉普拉斯之和)来检测焦点区域。可以很好地从源图像中提取出来,并重建生成一幅全聚焦图像。由于采用了四叉树分解策略和新的加权焦点测量法,因此所提出的算法简单而有效。程序已调通,可直接运行。2-88加权焦点测量方法-小红书(xiaoho
- opencv-python 图像增强十七:泊松图像融合
CV-King
opencvpython人工智能算法计算机视觉numpy
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、概述二,实现:前言在深入探讨图像处理与计算机视觉领域的过程中,我们不禁对图像融合技术的精妙与实用性感到着迷。图像融合不仅是一项融合了美学与科学的技术手段,它还巧妙地将来源各异、特性不同的图像数据整合为一体,从而生成视觉上连贯且富含信息的合成图像。本篇博客文章旨在详尽解析OpenCV库中的一项高级功能cv2.seamle
- 深度学习100问39:阿达玛乘积在实际生活中的应用
不断持续学习ing
人工智能自然语言处理机器学习
嘿,你知道吗?阿达玛乘积在我们的生活中可有着不少神奇的应用呢!一、图像处理领域在图像处理的世界里,阿达玛乘积就像是一个神奇的画笔。比如说图像融合吧,想象一下,你有两张超酷的照片,一张是美丽的风景照,另一张是带有超炫艺术滤镜的图片。通过阿达玛乘积,就好像让这两张照片上的每个小像素都来一场“亲密合作”。结果呢,你就得到了一张既有清晰风景又带有独特艺术风格的全新照片,是不是很神奇?还有在计算机视觉中,阿
- python的图像融合及图像的类型转换学习笔记
yava_free
python学习笔记
一、图像加法运算1.Numpy库加法其运算方法是:目标图像=图像1+图像2,运算结果进行取模运算。当像素值255时,结果为对255取模的结果,例如:(255+64)%255=642.OpenCV加法运算另一种方法是直接调用OpenCV库实现图像加法运算,方法如下:目标图像=cv2.add(图像1,图像2)此时结果是饱和运算,即:当像素值255时,结果为255,例如:(255+64)=255两种方法
- 2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合
顶呱呱程序
matlab工程应用matlab计算机视觉人工智能CS-MCA模型医学图像融合卷积稀疏的形态成分分析
基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析(CS-MCA)的稀疏表示(SR)模型,用于像素级医学图像融合。通过CS-MCA模型使用预先学习的字典获得其卡通和纹理组件的CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。2-79卷积稀疏的形态成分分析-小红书(xiaohongshu.com)
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- python作品创意简单,python艺术创作
chatgpt002
数据分析
大家好,本文将围绕python作品创意简单展开说明,python创意作品是一个很多人都想弄明白的事情,想搞清楚python的作品集需要先了解以下几个事情。1、如何生成二维高斯与Python在图像处理以及图像特效中,经常会用到一种成高斯分布的蒙版,蒙版可以用来做图像融合,将不同内容的两张图像结合蒙版,可以营造不同的艺术效果。I=M∗F+(1−M)∗B这里I表示合成后的图像,F表示前景图,B表示背景图
- 图像融合去雾、近红外去雾、(近)红外和可见光数据集
夏梦星晨
图像去雾夜景图像去雾低光照增强稠密雾去除去除沙尘
今天给大家分享一篇发表在IEEETMM上的去雾文章JointContrastEnhancementandExposureFusionforReal-WorldImageDehazing作者从对比度增强和曝光融合的视角来解决图像去雾问题,在真实场景上取得了较好的去雾效果。此外,作者将所提出的方法应用于手机人像编辑,低光照增强,夜景图像去雾等场景,均验证了所提方法的泛化性及有效性。所提方法,如下图所示
- 图像拼接(Image Stiching)方向论文微总结
yyywxk
图像拼接任务对于目前主流视觉任务来说比较偏,目前基于深度学习的框架还不成熟,而且拼接任务里面很多小点都可以单独拿出来研究,比如聚焦或迁移到单应矩阵,图像对齐,图像融合,视频防抖,图像矩形化等。找到好的研究场景,既能发文又能有实用价值。现简单整理近几年的相关文章,如有遗漏还望读者指出。期刊近几年NaturalImageStitchingUsingDepthMapsPaper:Arxiv2022Blo
- Opencv -- 007滚动条操作演示 - 图像融合函数addWeighted
xuechanba
笔记opencv
1、滚动条操作–对比度addWeighted函数利用公式dst=src1*alpha+src2*beta+gamma;来计算两个数组(图像)的加权和,换句话说就是两个图像按照一定比例融合,然后生成新的图像。06_opencv_mat.h#pragmaonce#ifndef_06_OPENCV_MAT_H#define_06_OPENCV_MAT_H#includeusingnamespacecv;
- 点云从入门到精通技术详解100篇-基于点云和图像融合的智能驾驶目标检测(中)
格图素书
目标跟踪人工智能计算机视觉
2.1.2数据源选型分析良好的数据输入是实现准确且鲁棒的3D目标检测的基础,下面针对不同的传感器组合方式进行分析:(1)摄像头和惯性测量单元:利用惯性测量单元的特性加强摄像头在运动状态下的抗干扰能力,可以有效提高感知算法在高速行驶场景下的检测精度,但依旧是依靠摄像头数据进行3D目标的检测,受环境及天气状况影响较大;(2)激光雷达和惯性测量单元:利用惯性测量单元可以抵消激光雷达在运动过程中产生的测量
- TextDiffuser-2:超越DALLE-3的文本图像融合技术
努力犯错
人工智能语言模型自然语言处理stablediffusionchatgpt
概述近年来,扩散模型在图像生成领域取得了显著进展,但在文本图像融合方面依然存在挑战。TextDiffuser-2的出现,标志着在这一领域的一个重要突破,它成功地结合了大型语言模型的能力,以实现更高效、多样化且美观的文本图像融合。Huggingface模型下载:https://huggingface.co/JingyeChen22/textdiffuser2_layout_plannerAI快站模型
- 电影动画用云渲染好吗?有什么优势
Renderbus瑞云渲染农场
渲染知识云渲染渲染农场动画云渲染效果图云渲染3d云渲染农场
动画电影的创作是一个将声音和图像融合以产生视觉故事的过程,电影通常是由一系列静止图像构成,其中每一幅静止图像称为一帧。动画电影的流畅度依赖于每秒播放的帧数,常见的帧率有25、60、90或120帧每秒等,具体取决于制片方的选择和制作标准。这些影片通常具有高分辨率,以及对细节的精细处理,因此渲染这些帧需要强大的计算能力。利用云渲染服务,可以带来诸多优势,如提高渲染效率、降低成本和提供更大的灵活性,而这
- 多摄拼接技术方案,无缝超广角视觉体验
美摄科技
人工智能音视频ar
在当今的科技时代,多摄像头拍摄技术已经成为了车辆、智能硬件等领域的必备技术。然而,如何将多个画面进行实时处理,消除拼缝、亮度不均、变形等问题,从而获得一个超广角、360°的超大视野图像,一直是行业内的一大挑战。今天,美摄科技带来了一种全新的解决方案——多摄拼接技术方案。美摄科技的多摄拼接技术方案,是基于多摄像头拍摄画面,通过利用美摄的图像融合算法和智能化拼接算法,对多个画面进行实时处理。这种技术方
- GEEHSV图像融合
赤豆冰棍
HSV图像融合主要功能对LC8影像,进行HSV图像融合代码//HSV-basedPan-Sharpening.//GrabasampleL8imageandpullouttheRGBandpanbands.varimage=ee.Image(ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA').filterDate('2017-01-01','2017-12-
- 图像融合论文阅读:ReFusion:通过元学习的从可学习损失重建中学习图像融合
图像强
论文阅读图像融合图像处理深度学习论文笔记元学习
@article{bai2023refusion,title={ReFusion:LearningImageFusionfromReconstructionwithLearnableLossviaMeta-Learning},author={Bai,HaowenandZhao,ZixiangandZhang,JiangsheandWu,YichenandDeng,LilunandCui,Yukun
- midjourney绘画指令怎么输出 midjourney绘画关键词怎么弄
氧惠好项目
midjourneyAI绘画工具是一款基于人工智能技术的图像绘画应用。它采用了一种称为“神经样式转换”的技术,能够将一张风格独特的图像和一张内容图像融合,生成一张具有新风格的图像。midjourney支持以下绘画指令:大家好,我是氧惠的波西导师。在开始本文的交流之前,我想向大家介绍一款网购省钱利器——氧惠APP,同时也是一项难得的零投入零成本的创业项目。官方邀请码088886,此码注册直升v5等级
- 图像融合论文阅读:CS2Fusion: 通过估计特征补偿图谱实现自监督红外和可见光图像融合的对比学习
图像强
图像融合论文阅读图像处理人工智能论文笔记深度学习图像融合
@article{wang2024cs2fusion,title={CS2Fusion:ContrastivelearningforSelf-Supervisedinfraredandvisibleimagefusionbyestimatingfeaturecompensationmap},author={Wang,XueandGuan,ZhengandQian,WenhuaandCao,Jind
- 图像融合论文阅读:CrossFuse: 一种基于交叉注意机制的红外与可见光图像融合方法
图像强
图像融合论文阅读图像处理论文笔记深度学习人工智能
@article{li2024crossfuse,title={CrossFuse:Anovelcrossattentionmechanismbasedinfraredandvisibleimagefusionapproach},author={Li,HuiandWu,Xiao-Jun},journal={InformationFusion},volume={103},pages={102147}
- 图像融合论文阅读:A Deep Learning Framework for Infrared and Visible Image Fusion Without Strict Registration
图像强
图像融合论文阅读深度学习人工智能图像融合图像处理论文笔记
@article{li2023deep,title={ADeepLearningFrameworkforInfraredandVisibleImageFusionWithoutStrictRegistration},author={Li,HuafengandLiu,JunyuandZhang,YafeiandLiu,Yu},journal={InternationalJournalofComput
- 图像融合论文阅读:(DIF-Net)Unsupervised Deep Image Fusion With Structure Tensor Representations
图像强
图像融合论文阅读图像融合图像处理深度学习人工智能
@article{jung2020unsupervised,title={Unsuperviseddeepimagefusionwithstructuretensorrepresentations},author={Jung,HyungjooandKim,YoungjungandJang,HyunsungandHa,NamkooandSohn,Kwanghoon},journal={IEEETra
- 图像融合论文阅读:MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion
图像强
图像融合论文阅读图像融合图像处理深度学习论文笔记
@article{xu2023murf,title={MURF:MutuallyReinforcingMulti-modalImageRegistrationandFusion},author={Xu,HanandYuan,JitengandMa,Jiayi},journal={IEEETransactionsonPatternAnalysisandMachineIntelligence},yea
- 多源图像融合训练的脚本示例 (Matlab训练多个输入的CNN模型)
foddcusL
图像处理深度学习cnn人工智能神经网络
简介:在常规的CNN图像训练中,matlab和pytorch都提供了很多标准示例,但其输入都是N*N*3的图像,在部分场景下,研究人员想要模型参考多个角度或不同源的成像数据得出一个综合的输出,这样模型能够考虑到更多的特征细节以提高预测精度。本文参考了题为‘NoninvasiveDetectionofSaltStressinCottonSeedlingsbyCombiningMulticolorFl
- 基于PCA-WA(Principal Component Analysis-weight average)的图像融合方法 Matlab代码及示例
foddcusL
图像处理试验数据分析文件工具matlab图像处理
摘要:高效地将多通道的图像数据压缩(如高光谱、多光谱成像数据)至较低的通道数,对提高深度学习(DL)模型的训练速度和预测至关重要。本文主要展示利用PCA降维结合weight-average的图像融合方法。文章主要参考了题为“NoninvasiveDetectionofSaltStressinCottonSeedlingsbyCombiningMulticolorFluorescence–Multi
- 图像融合论文阅读:Real-time infrared and visible image fusion network using adaptive pixel weighting strategy
qiang42
图像融合论文阅读图像处理人工智能深度学习论文笔记图像融合
@article{zhang2023real,title={Real-timeinfraredandvisibleimagefusionnetworkusingadaptivepixelweightingstrategy},author={Zhang,XuchongandZhai,HanandLiu,JiaxingandWang,ZhipingandSun,Hongbin},journal={In
- 图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion
qiang42
图像融合论文阅读深度学习图像融合图像处理人工智能论文笔记
@article{yue2023dif,title={Dif-fusion:Towardshighcolorfidelityininfraredandvisibleimagefusionwithdiffusionmodels},author={Yue,JunandFang,LeyuanandXia,ShaoboandDeng,YueandMa,Jiayi},journal={arXivprepri
- 图像融合论文阅读:DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion
qiang42
图像融合论文阅读图像处理论文笔记深度学习人工智能图像融合
@article{zhao2023ddfm,title={DDFM:denoisingdiffusionmodelformulti-modalityimagefusion},author={Zhao,ZixiangandBai,HaowenandZhu,YuanzhiandZhang,JiangsheandXu,ShuangandZhang,YulunandZhang,KaiandMeng,Dey
- 水下图像融合增强(Matlab代码实现)
@橘柑橙柠桔柚
图像增强图像处理计算机视觉matlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:1概述2运行结果3参考文献4Matlab代码实现1概述针对水下光的吸收和散射作用,水下图像往往存在颜色失真、对比度低、细节模糊等现象,提出了一种新的水下图像增强算法。首先,以颜色校正的方式改进了一种基于暗通道先验(DCP)的水上图像增强方法,使其可以更好地用于水下图像,并
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,