import copy
import random
import time
import math
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from OpenGL.arrays import vbo
import AutodiffEngine.autodiff as ad
import numpy as np
import pandas as pd
import threading
import three_d.freeTypeFont as glFreeType
from AutodiffEngine.gradient import gradient_color
IS_PERSPECTIVE = True # 透视投影
VIEW = np.array([-0.8, 0.8, -0.8, 0.8, 0.5, 50.0]) # 视景体的left/right/bottom/top/near/far六个面
SCALE_K = np.array([1.0, 1.0, 1.0]) # 模型缩放比例
EYE = np.array([0.0, 1.0, 1.0]) # 眼睛的位置(默认z轴的正方向)
LOOK_AT = np.array([0.0, 0.0, 0.0]) # 瞄准方向的参考点(默认在坐标原点)
EYE_UP = np.array([0.0, 1.0, 0.0]) # 定义对观察者而言的上方(默认y轴的正方向)
WIN_W, WIN_H = 640, 480 # 保存窗口宽度和高度的变量
LEFT_IS_DOWNED = False # 鼠标左键被按下
MOUSE_X, MOUSE_Y = 0, 0 # 考察鼠标位移量时保存的起始位置
input_colors = ["#b93f43", "#e4b1b6", "#037ee4"]
colors = gradient_color(input_colors, color_sum=300)
colors = np.array(colors)[:255, :] / 255
R = colors[:, 0]
G = colors[:, 1]
B = colors[:, 2]
# R = np.hstack((np.linspace(200, 255, 127), np.linspace(255, 47, 128)))[::-1] / 255
# G = np.hstack((np.linspace(3, 255, 127), np.linspace(255, 47, 128)))[::-1] / 255
# B = np.hstack((np.linspace(33, 200, 127), np.hstack((np.linspace(220, 255, 25), np.linspace(255, 150, 103)))))[
# ::-1] / 255
A = np.ones(255, dtype=np.float) * 0.5
TAG_XYZ = [0.0, -0.2, 0.0]
loss_mean, loss_std = None, None
tracks = [] # 轨迹
def getposture():
global EYE, LOOK_AT
dist = np.sqrt(np.power((EYE - LOOK_AT), 2).sum())
if dist > 0:
phi = np.arcsin((EYE[1] - LOOK_AT[1]) / dist)
theta = np.arcsin((EYE[0] - LOOK_AT[0]) / (dist * np.cos(phi)))
else:
phi = 0.0
theta = 0.0
return dist, phi, theta
DIST, PHI, THETA = getposture() # 眼睛与观察目标之间的距离、仰角、方位角
def init():
global our_font
our_font = glFreeType.font_data("msyh.ttc", 20)
glClearColor(0.0, 0.0, 0.0, 1.0) # 设置画布背景色。注意:这里必须是4个参数
glEnable(GL_DEPTH_TEST) # 开启深度测试,实现遮挡关系
glDepthFunc(GL_LEQUAL) # 设置深度测试函数(GL_LEQUAL只是选项之一)
def getColor(scale):
global R, G, B, A
scale = min(scale, 254)
return R[scale], B[scale], B[scale], A[scale]
def start_draw():
global w0, w1, loss, TAG_XYZ, vbo_vertices, vbo_indices, tracks, scope
XYZ = copy.deepcopy(TAG_XYZ)
tracks.append(XYZ)
# 绘制方形轨迹
size = 10.0
glPointSize(size)
glBegin(GL_POINTS)
glColor4f(0.0, 1.0, 0.0, 1.0)
# glVertex3f(XYZ[0], XYZ[1] + size / 5, XYZ[2])
glVertex3f(XYZ[0], XYZ[1], XYZ[2])
glEnd()
# 绘制球形轨迹
# glPushMatrix()
# glTranslatef(XYZ[0], XYZ[1], XYZ[2])
# glColor4f(0, 1, 1, 1)
# glutWireSphere(scope * 0.08, 10, 10)
# # glutSolidSphere(scope*0.08, 10, 10)
# glPopMatrix()
# 绘制曲面
vbo_vertices.bind()
# glInterleavedArrays(GL_V3F, 0, None)
glInterleavedArrays(GL_C3F_V3F, 0, None)
vbo_vertices.unbind()
vbo_indices.bind()
# glDrawElements(GL_QUADS, int(vbo_indices.size / 4), GL_UNSIGNED_INT, None)
glDrawElements(GL_TRIANGLES, int(vbo_indices.size / 4), GL_UNSIGNED_INT, None)
vbo_indices.unbind()
# 绘制轨迹
glEnable(GL_BLEND)
# glEnable(GL_LINE_SMOOTH)
glLineWidth(2.0)
glBegin(GL_LINES) # 开始绘制线段(世界坐标系)
glColor4f(0.9, 0.9, 0.9, 1.0) # 设置当前颜色为红色不透明
for i in range(len(tracks) - 1):
glVertex3f(tracks[i][0], float(tracks[i][1]), tracks[i][2])
glVertex3f(tracks[i + 1][0], float(tracks[i + 1][1]), tracks[i + 1][2])
glEnd()
def draw():
global IS_PERSPECTIVE, VIEW
global EYE, LOOK_AT, EYE_UP
global SCALE_K
global WIN_W, WIN_H
global scope
# 清除屏幕及深度缓存
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
# 设置投影(透视投影)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
if WIN_W > WIN_H:
if IS_PERSPECTIVE:
glFrustum(VIEW[0] * WIN_W / WIN_H, VIEW[1] * WIN_W / WIN_H, VIEW[2], VIEW[3], VIEW[4],
VIEW[5]) # glFrustum() 用来设置平行投影
else:
glOrtho(VIEW[0] * WIN_W / WIN_H, VIEW[1] * WIN_W / WIN_H, VIEW[2], VIEW[3], VIEW[4],
VIEW[5]) # glOrtho() 用来设置平行投影
else:
if IS_PERSPECTIVE:
glFrustum(VIEW[0], VIEW[1], VIEW[2] * WIN_H / WIN_W, VIEW[3] * WIN_H / WIN_W, VIEW[4], VIEW[5])
else:
glOrtho(VIEW[0], VIEW[1], VIEW[2] * WIN_H / WIN_W, VIEW[3] * WIN_H / WIN_W, VIEW[4], VIEW[5])
# 设置模型视图
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
# 几何变换
glScale(SCALE_K[0], SCALE_K[1], SCALE_K[2])
# 设置视点
gluLookAt(
EYE[0], EYE[1], EYE[2],
LOOK_AT[0], LOOK_AT[1], LOOK_AT[2],
EYE_UP[0], EYE_UP[1], EYE_UP[2]
)
# 设置视口
glViewport(0, 0, WIN_W, WIN_H)
# ---------------------------------------------------------------
glLineWidth(1.0)
glBegin(GL_LINES) # 开始绘制线段(世界坐标系)
# 以红色绘制x轴
glColor4f(1.0, 0.0, 0.0, 1.0) # 设置当前颜色为红色不透明
glVertex3f(-scope, 0.0, 0.0) # 设置x轴顶点(x轴负方向)
glVertex3f(scope, 0.0, 0.0) # 设置x轴顶点(x轴正方向)
glVertex3f(scope, 0.0, 0.0) # x轴正方向箭头
glVertex3f(scope - 0.1 * scope, -0.05 * scope, 0.0) # x轴正方向箭头
# 以绿色绘制y轴
glColor4f(0.0, 1.0, 0.0, 1.0) # 设置当前颜色为绿色不透明
glVertex3f(0.0, -scope, 0.0) # 设置y轴顶点(y轴负方向)
glVertex3f(0.0, scope, 0.0) # 设置y轴顶点(y轴正方向)
glVertex3f(0.0, scope, 0.0) # y轴正方向箭头
glVertex3f(-0.05 * scope, scope - 0.1 * scope, 0.0) # y轴正方向箭头
# 以蓝色绘制z轴
glColor4f(0.0, 0.0, 1.0, 1.0) # 设置当前颜色为蓝色不透明
glVertex3f(0.0, 0.0, -scope) # 设置z轴顶点(z轴负方向)
glVertex3f(0.0, 0.0, scope) # 设置z轴顶点(z轴正方向)
glVertex3f(0.0, 0.0, scope) # z轴正方向箭头
glVertex3f(0.0, -0.05 * scope, scope - 0.1 * scope) # z轴正方向箭头
glEnd() # 结束绘制线段
start_draw()
# ---------------------------------------------------------------
glutSwapBuffers() # 切换缓冲区,以显示绘制内容
def reshape(width, height):
global WIN_W, WIN_H
WIN_W, WIN_H = width, height
glutPostRedisplay()
def mouseclick(button, state, x, y):
global SCALE_K
global LEFT_IS_DOWNED
global MOUSE_X, MOUSE_Y
MOUSE_X, MOUSE_Y = x, y
if button == GLUT_LEFT_BUTTON:
LEFT_IS_DOWNED = state == GLUT_DOWN
elif button == 3:
SCALE_K *= 1.05
glutPostRedisplay()
elif button == 4:
SCALE_K *= 0.95
glutPostRedisplay()
def mousemotion(x, y):
global LEFT_IS_DOWNED
global EYE, EYE_UP
global MOUSE_X, MOUSE_Y
global DIST, PHI, THETA
global WIN_W, WIN_H
if LEFT_IS_DOWNED:
dx = MOUSE_X - x
dy = y - MOUSE_Y
MOUSE_X, MOUSE_Y = x, y
PHI += 2 * np.pi * dy / WIN_H
PHI %= 2 * np.pi
THETA += 2 * np.pi * dx / WIN_W
THETA %= 2 * np.pi
r = DIST * np.cos(PHI)
EYE[1] = DIST * np.sin(PHI) * scope
EYE[0] = r * np.sin(THETA) * scope
EYE[2] = r * np.cos(THETA) * scope
if 0.5 * np.pi < PHI < 1.5 * np.pi:
EYE_UP[1] = -1.0
else:
EYE_UP[1] = 1.0
glutPostRedisplay()
def keydown(key, x, y):
global DIST, PHI, THETA
global EYE, LOOK_AT, EYE_UP
global IS_PERSPECTIVE, VIEW
if key in [b'x', b'X', b'y', b'Y', b'z', b'Z']:
if key == b'x': # 瞄准参考点 x 减小
LOOK_AT[0] -= 0.1
elif key == b'X': # 瞄准参考 x 增大
LOOK_AT[0] += 0.1
elif key == b'y': # 瞄准参考点 y 减小
LOOK_AT[1] -= 0.1
elif key == b'Y': # 瞄准参考点 y 增大
LOOK_AT[1] += 0.1
elif key == b'z': # 瞄准参考点 z 减小
LOOK_AT[2] -= 0.1
elif key == b'Z': # 瞄准参考点 z 增大
LOOK_AT[2] += 0.1
DIST, PHI, THETA = getposture()
glutPostRedisplay()
elif key == b'\r': # 回车键,视点前进
EYE = LOOK_AT + (EYE - LOOK_AT) * 0.9
DIST, PHI, THETA = getposture()
glutPostRedisplay()
elif key == b'\x08': # 退格键,视点后退
EYE = LOOK_AT + (EYE - LOOK_AT) * 1.1
DIST, PHI, THETA = getposture()
glutPostRedisplay()
elif key == b' ': # 空格键,切换投影模式
IS_PERSPECTIVE = not IS_PERSPECTIVE
glutPostRedisplay()
def logistic_prob(_w):
def wrapper(_x):
return 1 / (1 + np.exp(-np.sum(_x * _w)))
return wrapper
def test_accuracy(_w, _X, _Y):
prob = logistic_prob(_w)
correct = 0
total = len(_Y)
for i in range(len(_Y)):
x = _X[i]
y = _Y[i]
p = prob(x)
if p >= 0.5 and y == 1.0:
correct += 1
elif p < 0.5 and y == 0.0:
correct += 1
print("总数:%d, 预测正确:%d" % (total, correct))
def gen_2d_data(n):
np.random.seed(3)
x_data = np.random.random([n, 1])
y_data = np.ones(n)
for i in range(n):
d = x_data[i]
if d[0] < 0.5:
y_data[i] = 0
x_data_with_bias = np.ones([n, 2])
x_data_with_bias[:, 1:] = x_data
return x_data_with_bias, y_data
def gen_2d_data2(n):
np.random.seed()
x_data = np.random.random([n, 2]) * 4 - 2
w = np.random.random_integers(-5, 5, [2, 1])/1.0
b = np.random.random_integers(-100, 100, [1])/100
print(f"W = {w} b = {b}")
hidden = np.matmul(x_data, w)[:, 0] + b
y_data = 1 / (1 + np.exp(-hidden))
#
# y_data = np.where(np.sum(x_data, axis=1) > 0, 0, 1)
# y_data = 1 - np.round(np.mean(np.square(x_data), axis=1), decimals=0)
return x_data, y_data
def gen_2d_data3(n):
np.random.seed()
x_data1 = np.random.rand(int(n/2), 2)*0.2+0.2
x_data2 = np.random.rand(int(n/2), 2)*0.2+0.7
x_data = np.concatenate((x_data1, x_data2))
y_data1 = np.zeros_like(x_data1[:, 0])
y_data2 = np.ones_like(x_data1[:, 0])
y_data = np.concatenate((y_data1, y_data2))
c = list(zip(x_data, y_data))
np.random.shuffle(c)
x_data, y_data = zip(*c)
x_data, y_data = np.array(x_data), np.array(y_data)
return x_data, y_data
def cost(theta0, theta1):
global data_x, data_y
J = 0
m = len(data_x)
hidden = np.dot(data_x, np.array([theta0, theta1]))
sigmoid = 1 / (1 + np.exp(-hidden))
J = np.sum(np.square(sigmoid - data_y))
# J = np.sum(-data_y * ad.log(sigmoid+0.01) - (1 - data_y) * ad.log(1 - sigmoid+0.01))
return J
def move(args):
glutPostRedisplay()
glutTimerFunc(33, move, 1)
def train():
global X_val, Y_val, w_val, TAG_XYZ, N, loss, loss_mean, loss_std
x = ad.Variable(name='x')
w = ad.Variable(name='w')
y = ad.Variable(name='y')
# 注意,以下实现某些情况会有很大的数值误差,
# 所以一般真实系统实现会提供高阶算子,从而减少数值误差
hidden = ad.matmul(x, w)
sigmoid = 1 / (1 + ad.exp(-hidden))
# L = -y * ad.log(sigmoid+0.01) - (1 - y) * ad.log(1 - sigmoid+0.01)
L = ad.reduce_sum(ad.square(sigmoid - y))
w_grad, = ad.gradients(L, [w])
executor = ad.Executor([L, sigmoid, w_grad])
test_accuracy(w_val, X_val, Y_val)
batch = 10
learning_rate = 0.1
max_iters = 5000
for iteration in range(max_iters):
for i in range(int(N / batch)):
x_val = X_val[i * batch:i * batch + batch, :]
y_val = Y_val[i * batch:i * batch + batch]
L_val, predict, w_grad_val = executor.run(feed_dict={w: w_val, x: x_val, y: y_val})
w_val -= learning_rate * w_grad_val
TAG_XYZ[0] = float(w_val[0])
TAG_XYZ[2] = float(w_val[1])
l = cost(float(w_val[0]), float(w_val[1]))
TAG_XYZ[1] = (l - loss_mean) / loss_std * 5
print(f"iter = {iteration}, w = {w_val}, loss={l}")
time.sleep(0.01)
test_accuracy(w_val, X_val, Y_val)
def deal_vbo(w0, w1, loss):
s = time.time()
vertices = []
indices = []
loss_flatten = loss.flatten()
loss_flatten.sort()
edge_max = loss_flatten[-20]
edge_min = loss_flatten[20]
for i in range(len(w0)):
for j in range(len(w1)):
point = [float(w0[i]), float(loss[i][j]), float(w1[j])]
rgba = getColor(int((float(loss[i][j]) - loss.min()) / (loss.max() - loss.min()) * 255))
if float(loss[i][j]) < edge_min:
rgba = (1.0, 0.0, 0.0, 0.5)
if float(loss[i][j]) > edge_max:
rgba = (0.0, 1.0, 0.0, 0.5)
vertices += rgba[:-1]
vertices += point
if i < len(w0) - 1 and j < len(w1) - 1:
# indices += [i * len(w0) + j, (i + 1) * len(w0) + j, (i + 1) * len(w0) + j + 1, i * len(w0) + j + 1]
indices += [i * len(w0) + j,
(i + 1) * len(w0) + j,
(i + 1) * len(w0) + j + 1
]
indices += [i * len(w0) + j,
(i + 1) * len(w0) + j + 1,
i * len(w0) + j + 1
]
print("ddd", time.time() - s)
return np.array(vertices, np.float32), np.array(indices, np.int)
if __name__ == "__main__":
N = 100
# X_val, Y_val = gen_2d_data(N)
X_val, Y_val = gen_2d_data2(N)
data_x = X_val
data_y = Y_val
# w_val = np.zeros(2)
# w_val = np.array([-0.0, -1.0])
w_val = np.random.random_integers(-10, 10, [2])/1.0 # 初始化权重
print(w_val)
scope = 15
EYE *= scope
SCALE_K *= 1 / scope
num = 200
w0 = np.linspace(-scope, scope, num)
w1 = np.linspace(-scope, scope, num)
loss = np.empty(shape=(num, num))
# w0, w1 = np.meshgrid(w0, w1)
for i in range(num):
for j in range(num):
loss[i, j] = cost(w0[i], w1[j])
loss_mean = loss.mean()
loss_std = loss.std()
loss = (loss - loss_mean) / loss_std * 5
vertices, indices = deal_vbo(w0, w1, loss)
vbo_vertices = vbo.VBO(vertices)
vbo_indices = vbo.VBO(indices, target=GL_ELEMENT_ARRAY_BUFFER)
glutInit()
glutInitDisplayMode(GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH | GLUT_RGBA)
glutInitWindowSize(WIN_W, WIN_H)
glutInitWindowPosition(300, 200)
glutCreateWindow('梯度下降动画'.encode("gbk"))
init() # 初始化画布
glutDisplayFunc(draw) # 注册回调函数draw()
glutTimerFunc(33, move, 1)
glutReshapeFunc(reshape) # 注册响应窗口改变的函数reshape()
glutMouseFunc(mouseclick) # 注册响应鼠标点击的函数mouseclick()
glutMotionFunc(mousemotion) # 注册响应鼠标拖拽的函数mousemotion()
glutKeyboardFunc(keydown) # 注册键盘输入的函数keydown()
t = threading.Thread(target=train, args=())
t.start()
glutMainLoop() # 进入glut主循环
源码: Github.