认真的虎ORBSLAM2源码解读(三):Optimizer

目录

  • 0.前言
  • 1.简述
  • 2.头文件
  • 3.源文件
    • 3.1.BundleAdjustment()
    • 3.2.
    • 3.3. PoseOptimization()
    • 3.4.OptimizeEssentialGraph()
    • 3.5. OptimizeSim3()

0.前言

注释代码已公开,欢迎交流~~
注释代码已公开,欢迎交流
其他系列文章地址

1.简述

2.头文件

class Optimizer
{
public:
    /**通过优化vpKF的位姿,vpMP等优化变量,使得vpMP通过vpKF里的位姿投影到vpKF的二维坐标的重投影误差最小
     * @param vpKF 位姿优化变量相关的关键帧
     * @param vpMP 空间点优化变量相关的mappoint
     * @param nIterations 使用G2o优化次数
     * @param pbStopFlag  是否强制暂停
     * @param nLoopKF  表明在id为nLoopKF处进行的BA
     * @param bRobust  是否使用核函数
     */
    void static BundleAdjustment(const std::vector<KeyFrame*> &vpKF, const std::vector<MapPoint*> &vpMP,
                                 int nIterations = 5, bool *pbStopFlag=NULL, const unsigned long nLoopKF=0,
                                 const bool bRobust = true);
    /**调用BundleAdjustment(),将map中所有keyframe位姿和mappoint位置作为优化遍历进行BA
     */
    void static GlobalBundleAdjustemnt(Map* pMap, int nIterations=5, bool *pbStopFlag=NULL,
                                       const unsigned long nLoopKF=0, const bool bRobust = true);
    /**
     * 将Covisibility graph中与pKF连接的关键帧放入lLocalKeyFrames作为g2o图的顶点
     * 将被lLocalKeyFrames看到的mappoint放入lLocalMapPoints中,作为g2o图的顶点
     * lFixedCameras储存着能看到lLocalMapPoints,但是又不在lLocalKeyFrames里的关键帧,作为g2o图的顶点
     * 将lLocalMapPoints里的mappoint的每个观测作为一条误差项边
     */
    void static LocalBundleAdjustment(KeyFrame* pKF, bool *pbStopFlag, Map *pMap);
    
    /**
    * 3D-2D 最小化重投影误差 e = (u,v) - project(Tcw*Pw) \n
    * 只优化Frame的Tcw,不优化MapPoints的坐标
    * 更新pFrame->mvbOutlier
    * 更新了pFrame的位姿,pFrame->SetPose(pose);
    * @param   pFrame Frame
    * @return  inliers数量
    */
    int static PoseOptimization(Frame* pFrame);

    // if bFixScale is true, 6DoF optimization (stereo,rgbd), 7DoF otherwise (mono)
    //顶点为map中所有keyframe
    //边为LoopConnections中的连接关系,以及essential graph中的边:1.扩展树(spanning tree)连接关系,
    //2.闭环连接关系,3.共视关系非常好的连接关系(共视点为100)
    void static OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
                                       const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
                                       const LoopClosing::KeyFrameAndPose &CorrectedSim3,
                                       const map<KeyFrame *, set<KeyFrame *> > &LoopConnections,
                                       const bool &bFixScale);

    // if bFixScale is true, optimize SE3 (stereo,rgbd), Sim3 otherwise (mono)
    /**
     * @param pKF1
     * @param vpMatches1 pKF1的特征点与pKF2的mappoint匹配情况
     * @return 
     */
    static int OptimizeSim3(KeyFrame* pKF1, KeyFrame* pKF2, std::vector<MapPoint *> &vpMatches1,
                            g2o::Sim3 &g2oS12, const float th2, const bool bFixScale);
};

3.源文件

3.1.BundleAdjustment()

/**通过优化vpKF的位姿,vpMP等优化变量,使得vpMP通过vpKF里的位姿投影到vpKF的二维坐标的重投影误差最小
 * @param vpKF 位姿优化变量相关的关键帧
 * @param vpMP 空间点优化变量相关的mappoint
 * @param nIterations 使用G2o优化次数
 * @param pbStopFlag  是否强制暂停
 * @param nLoopKF  表明在id为nLoopKF处进行的BA
 * @param bRobust  是否使用核函数
 */
void Optimizer::BundleAdjustment(const vector<KeyFrame *> &vpKFs, const vector<MapPoint *> &vpMP,
                                 int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
    vector<bool> vbNotIncludedMP;
    vbNotIncludedMP.resize(vpMP.size());

    g2o::SparseOptimizer optimizer;
    //typedef BlockSolver< BlockSolverTraits<6, 3> > BlockSolver_6_3;
    //这表明误差变量为6维,误差项为3维
    g2o::BlockSolver_6_3::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();

    g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    //是否开启强制停止开关
    if(pbStopFlag)
        optimizer.setForceStopFlag(pbStopFlag);

    long unsigned int maxKFid = 0;

    // Set KeyFrame vertices
    //遍历提供的所有关键帧,向g2o中添加顶点误差变量,为keyframe里的相机位姿
    for(size_t i=0; i<vpKFs.size(); i++)
    {
        KeyFrame* pKF = vpKFs[i];
        if(pKF->isBad())
            continue;
	//节点类型为g2o::VertexSE3Expmap
        g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
	//设置位姿顶点误差变量的初始值
        vSE3->setEstimate(Converter::toSE3Quat(pKF->GetPose()));
	//这个顶点的ID
        vSE3->setId(pKF->mnId);
	//如果是第0帧,那么就不优化这个顶点误差变量
        vSE3->setFixed(pKF->mnId==0);
	//将配置好的顶点添加到optimizer
        optimizer.addVertex(vSE3);
	//更新maxKFid
        if(pKF->mnId>maxKFid)
            maxKFid=pKF->mnId;
    }

    //核函数相关参数
    const float thHuber2D = sqrt(5.99);
    const float thHuber3D = sqrt(7.815);

    // Set MapPoint vertices
    //遍历vpMP提供的所有mappoint,向g2o添加顶点误差变量
    for(size_t i=0; i<vpMP.size(); i++)
    {
        MapPoint* pMP = vpMP[i];
        if(pMP->isBad())
            continue;
	//顶点类型为g2o::VertexSBAPointXYZ
        g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
	//设定顶点的初始值
        vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
	//注意这里和位姿顶点的ID向匹配
        const int id = pMP->mnId+maxKFid+1;
        vPoint->setId(id);
	//设置该点在解方程时进行schur消元,就是是否利用稀疏化加速
        vPoint->setMarginalized(true);
	//将配置好的顶点添加到optimizer
        optimizer.addVertex(vPoint);

       const map<KeyFrame*,size_t> observations = pMP->GetObservations();

        int nEdges = 0;
        //SET EDGES
	//遍历此mappoint能被看到的所有keyframe,向优化器添加误差边
        for(map<KeyFrame*,size_t>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
        {

            KeyFrame* pKF = mit->first;
            if(pKF->isBad() || pKF->mnId>maxKFid)
                continue;

            nEdges++;

            const cv::KeyPoint &kpUn = pKF->mvKeysUn[mit->second];
	    //开始添加边了
	    // 单目或RGBD相机
            if(pKF->mvuRight[mit->second]<0)
            {
                Eigen::Matrix<double,2,1> obs;
                obs << kpUn.pt.x, kpUn.pt.y;

		//边类型为g2o::EdgeSE3ProjectXYZ
                g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();
		//添加和这条边相连的mappoint顶点,0为边的ID
                e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
		//添加和这条边相连的位姿顶点
                e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
                e->setMeasurement(obs);
                const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
		//根据mappoint所在高斯金字塔尺度设置信息矩阵
                e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);

		//如果需要开启核函数
                if(bRobust)
                {
                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuber2D);
                }

                //向边添加内参
                e->fx = pKF->fx;
                e->fy = pKF->fy;
                e->cx = pKF->cx;
                e->cy = pKF->cy;
		
		//添加边
                optimizer.addEdge(e);
            }
            //双目
            else
            {
                Eigen::Matrix<double,3,1> obs;
                const float kp_ur = pKF->mvuRight[mit->second];
                obs << kpUn.pt.x, kpUn.pt.y, kp_ur;

                g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();

                e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
                e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
                e->setMeasurement(obs);
                const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
                Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
                e->setInformation(Info);

                if(bRobust)
                {
                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuber3D);
                }

                e->fx = pKF->fx;
                e->fy = pKF->fy;
                e->cx = pKF->cx;
                e->cy = pKF->cy;
                e->bf = pKF->mbf;

                optimizer.addEdge(e);
            }
        }

        if(nEdges==0)
        {
            optimizer.removeVertex(vPoint);
            vbNotIncludedMP[i]=true;
        }
        else
        {
            vbNotIncludedMP[i]=false;
        }
    }

    // Optimize!
    optimizer.initializeOptimization();
    optimizer.optimize(nIterations);

    // Recover optimized data

    //Keyframes
    //遍历所有关键帧,根据优化结果更新关键帧的位姿
    for(size_t i=0; i<vpKFs.size(); i++)
    {
        KeyFrame* pKF = vpKFs[i];
        if(pKF->isBad())
            continue;
	//这里是确保数据类型正确
        g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKF->mnId));
	//取出优化变量vSE3的结果
        g2o::SE3Quat SE3quat = vSE3->estimate();
        if(nLoopKF==0)
        {
            pKF->SetPose(Converter::toCvMat(SE3quat));
        }
        else
        {
            pKF->mTcwGBA.create(4,4,CV_32F);
            Converter::toCvMat(SE3quat).copyTo(pKF->mTcwGBA);
            pKF->mnBAGlobalForKF = nLoopKF;
        }
    }

    //Points
    //遍历取出优化变量结果,更新mappoint
    for(size_t i=0; i<vpMP.size(); i++)
    {
        if(vbNotIncludedMP[i])
            continue;

        MapPoint* pMP = vpMP[i];

        if(pMP->isBad())
            continue;
	//取出顶点优化变量g2o::VertexSBAPointXYZ结果
        g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));

        if(nLoopKF==0)
        {
            pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
            pMP->UpdateNormalAndDepth();
        }
        else
        {
            pMP->mPosGBA.create(3,1,CV_32F);
            Converter::toCvMat(vPoint->estimate()).copyTo(pMP->mPosGBA);
            pMP->mnBAGlobalForKF = nLoopKF;
        }
    }

}

3.2.

/**
 * 将Covisibility graph中与pKF连接的关键帧放入lLocalKeyFrames作为g2o图的顶点
 * 将被lLocalKeyFrames看到的mappoint放入lLocalMapPoints中,作为g2o图的顶点
 * lFixedCameras储存着能看到lLocalMapPoints,但是又不在lLocalKeyFrames里的关键帧,作为g2o图的顶点
 * 将lLocalMapPoints里的mappoint的每个观测作为一条误差项边
 */
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, Map* pMap)
{    
    // Local KeyFrames: First Breath Search from Current Keyframe
    list<KeyFrame*> lLocalKeyFrames;

    lLocalKeyFrames.push_back(pKF);
    pKF->mnBALocalForKF = pKF->mnId;

    //将Covisibility graph中与pKF连接的关键帧放入lLocalKeyFrames
    const vector<KeyFrame*> vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
    for(int i=0, iend=vNeighKFs.size(); i<iend; i++)
    {
        KeyFrame* pKFi = vNeighKFs[i];
        pKFi->mnBALocalForKF = pKF->mnId;
        if(!pKFi->isBad())
            lLocalKeyFrames.push_back(pKFi);
    }

    // Local MapPoints seen in Local KeyFrames
    //将被lLocalKeyFrames看到的mappoint放入lLocalMapPoints中
    list<MapPoint*> lLocalMapPoints;
    for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin() , lend=lLocalKeyFrames.end(); lit!=lend; lit++)
    {
        vector<MapPoint*> vpMPs = (*lit)->GetMapPointMatches();
        for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
        {
            MapPoint* pMP = *vit;
            if(pMP)
                if(!pMP->isBad())
                    if(pMP->mnBALocalForKF!=pKF->mnId)
                    {
                        lLocalMapPoints.push_back(pMP);
                        pMP->mnBALocalForKF=pKF->mnId;
                    }
        }
    }

    // Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
    //lFixedCameras储存着能看到lLocalMapPoints,但是又不在lLocalKeyFrames里的关键帧
    list<KeyFrame*> lFixedCameras;
    for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
    {
        map<KeyFrame*,size_t> observations = (*lit)->GetObservations();
        for(map<KeyFrame*,size_t>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
        {
            KeyFrame* pKFi = mit->first;

            if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
            {                
                pKFi->mnBAFixedForKF=pKF->mnId;
                if(!pKFi->isBad())
                    lFixedCameras.push_back(pKFi);
            }
        }
    }

    // Setup optimizer
    g2o::SparseOptimizer optimizer;
    g2o::BlockSolver_6_3::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();

    g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    if(pbStopFlag)
        optimizer.setForceStopFlag(pbStopFlag);

    unsigned long maxKFid = 0;

    // Set Local KeyFrame vertices
    //将lLocalKeyFrames关键帧的位姿设置为g2ol图的顶点
    for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
    {
        KeyFrame* pKFi = *lit;
        g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
        vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
        vSE3->setId(pKFi->mnId);
        vSE3->setFixed(pKFi->mnId==0);
        optimizer.addVertex(vSE3);
        if(pKFi->mnId>maxKFid)
            maxKFid=pKFi->mnId;
    }

    // Set Fixed KeyFrame vertices
    //将lFixedCameras里的关键帧的位姿设置为g2o图的顶点
    for(list<KeyFrame*>::iterator lit=lFixedCameras.begin(), lend=lFixedCameras.end(); lit!=lend; lit++)
    {
        KeyFrame* pKFi = *lit;
        g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
        vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
        vSE3->setId(pKFi->mnId);
        vSE3->setFixed(true);
        optimizer.addVertex(vSE3);
        if(pKFi->mnId>maxKFid)
            maxKFid=pKFi->mnId;
    }

    // Set MapPoint vertices
    const int nExpectedSize = (lLocalKeyFrames.size()+lFixedCameras.size())*lLocalMapPoints.size();

    vector<g2o::EdgeSE3ProjectXYZ*> vpEdgesMono;
    vpEdgesMono.reserve(nExpectedSize);

    vector<KeyFrame*> vpEdgeKFMono;
    vpEdgeKFMono.reserve(nExpectedSize);

    vector<MapPoint*> vpMapPointEdgeMono;
    vpMapPointEdgeMono.reserve(nExpectedSize);

    vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
    vpEdgesStereo.reserve(nExpectedSize);

    vector<KeyFrame*> vpEdgeKFStereo;
    vpEdgeKFStereo.reserve(nExpectedSize);

    vector<MapPoint*> vpMapPointEdgeStereo;
    vpMapPointEdgeStereo.reserve(nExpectedSize);

    const float thHuberMono = sqrt(5.991);
    const float thHuberStereo = sqrt(7.815);

    //将lLocalMapPoints里的mappoint空间位置作为g2o图的顶点
    for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
    {
        MapPoint* pMP = *lit;
        g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
        vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
        int id = pMP->mnId+maxKFid+1;
        vPoint->setId(id);
        vPoint->setMarginalized(true);
        optimizer.addVertex(vPoint);

        const map<KeyFrame*,size_t> observations = pMP->GetObservations();

        //Set edges
	//遍历当前mappoint的每个观测
	//将这些观测形成g2o图的一条边,以重投影误差作为误差项
        for(map<KeyFrame*,size_t>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
        {
            KeyFrame* pKFi = mit->first;

            if(!pKFi->isBad())
            {                
                const cv::KeyPoint &kpUn = pKFi->mvKeysUn[mit->second];

                // Monocular observation
                if(pKFi->mvuRight[mit->second]<0)
                {
                    Eigen::Matrix<double,2,1> obs;
                    obs << kpUn.pt.x, kpUn.pt.y;

                    g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();

                    e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
                    e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
                    e->setMeasurement(obs);
                    const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
                    e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);

                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuberMono);

                    e->fx = pKFi->fx;
                    e->fy = pKFi->fy;
                    e->cx = pKFi->cx;
                    e->cy = pKFi->cy;

                    optimizer.addEdge(e);
                    vpEdgesMono.push_back(e);
                    vpEdgeKFMono.push_back(pKFi);
                    vpMapPointEdgeMono.push_back(pMP);
                }
                else // Stereo observation
                {
                    Eigen::Matrix<double,3,1> obs;
                    const float kp_ur = pKFi->mvuRight[mit->second];
                    obs << kpUn.pt.x, kpUn.pt.y, kp_ur;

                    g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();

                    e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
                    e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
                    e->setMeasurement(obs);
                    const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
                    Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
                    e->setInformation(Info);

                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuberStereo);

                    e->fx = pKFi->fx;
                    e->fy = pKFi->fy;
                    e->cx = pKFi->cx;
                    e->cy = pKFi->cy;
                    e->bf = pKFi->mbf;

                    optimizer.addEdge(e);
                    vpEdgesStereo.push_back(e);
                    vpEdgeKFStereo.push_back(pKFi);
                    vpMapPointEdgeStereo.push_back(pMP);
                }
            }
        }
    }

    if(pbStopFlag)
        if(*pbStopFlag)
            return;

    optimizer.initializeOptimization();
    optimizer.optimize(5);

    bool bDoMore= true;

    if(pbStopFlag)
        if(*pbStopFlag)
            bDoMore = false;

    if(bDoMore)
    {

    // Check inlier observations
    for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
    {
        g2o::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
        MapPoint* pMP = vpMapPointEdgeMono[i];

        if(pMP->isBad())
            continue;

        if(e->chi2()>5.991 || !e->isDepthPositive())
        {
            e->setLevel(1);
        }

        e->setRobustKernel(0);
    }

    for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
    {
        g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
        MapPoint* pMP = vpMapPointEdgeStereo[i];

        if(pMP->isBad())
            continue;

        if(e->chi2()>7.815 || !e->isDepthPositive())
        {
            e->setLevel(1);
        }

        e->setRobustKernel(0);
    }

    // Optimize again without the outliers

    optimizer.initializeOptimization(0);
    optimizer.optimize(10);

    }

    vector<pair<KeyFrame*,MapPoint*> > vToErase;
    vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());

    // Check inlier observations       
    for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
    {
        g2o::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
        MapPoint* pMP = vpMapPointEdgeMono[i];

        if(pMP->isBad())
            continue;

        if(e->chi2()>5.991 || !e->isDepthPositive())
        {
            KeyFrame* pKFi = vpEdgeKFMono[i];
            vToErase.push_back(make_pair(pKFi,pMP));
        }
    }

    for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
    {
        g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
        MapPoint* pMP = vpMapPointEdgeStereo[i];

        if(pMP->isBad())
            continue;

        if(e->chi2()>7.815 || !e->isDepthPositive())
        {
            KeyFrame* pKFi = vpEdgeKFStereo[i];
            vToErase.push_back(make_pair(pKFi,pMP));
        }
    }

    // Get Map Mutex
    unique_lock<mutex> lock(pMap->mMutexMapUpdate);

    if(!vToErase.empty())
    {
        for(size_t i=0;i<vToErase.size();i++)
        {
            KeyFrame* pKFi = vToErase[i].first;
            MapPoint* pMPi = vToErase[i].second;
            pKFi->EraseMapPointMatch(pMPi);
            pMPi->EraseObservation(pKFi);
        }
    }

    // Recover optimized data

    //恢复优化变量的数据
    //Keyframes
    for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
    {
        KeyFrame* pKF = *lit;
        g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKF->mnId));
        g2o::SE3Quat SE3quat = vSE3->estimate();
        pKF->SetPose(Converter::toCvMat(SE3quat));
    }

    //Points
    for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
    {
        MapPoint* pMP = *lit;
        g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
        pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
        pMP->UpdateNormalAndDepth();
    }
}

3.3. PoseOptimization()

/**
* 3D-2D 最小化重投影误差 e = (u,v) - project(Tcw*Pw) \n
* 只优化Frame的Tcw,不优化MapPoints的坐标
* 更新pFrame->mvbOutlier
* 更新了pFrame的位姿,pFrame->SetPose(pose);
* @param   pFrame Frame
* @return  inliers数量
*/
int Optimizer::PoseOptimization(Frame *pFrame)
{
    //这里请参考Optimizer::BundleAdjustment的注释
    g2o::SparseOptimizer optimizer;
    g2o::BlockSolver_6_3::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverDense<g2o::BlockSolver_6_3::PoseMatrixType>();

    g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    int nInitialCorrespondences=0;

    // Set Frame vertex
    //将pFrame的位姿添加为顶点作为优化变量
    g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
    vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
    vSE3->setId(0);
    vSE3->setFixed(false);
    optimizer.addVertex(vSE3);

    // Set MapPoint vertices
    const int N = pFrame->N;

    vector<g2o::EdgeSE3ProjectXYZOnlyPose*> vpEdgesMono;
    vector<size_t> vnIndexEdgeMono;
    vpEdgesMono.reserve(N);
    vnIndexEdgeMono.reserve(N);

    vector<g2o::EdgeStereoSE3ProjectXYZOnlyPose*> vpEdgesStereo;
    vector<size_t> vnIndexEdgeStereo;
    vpEdgesStereo.reserve(N);
    vnIndexEdgeStereo.reserve(N);

    const float deltaMono = sqrt(5.991);
    const float deltaStereo = sqrt(7.815);


    {
    unique_lock<mutex> lock(MapPoint::mGlobalMutex);

    //遍历pFrame帧的所有特征点,添加g2o边
    for(int i=0; i<N; i++)
    {
        MapPoint* pMP = pFrame->mvpMapPoints[i];
	//如果此特征点有对应的mappoint
        if(pMP)
        {
            // Monocular observation
	    //单目
            if(pFrame->mvuRight[i]<0)
            {
		//记录添加了多少条边
                nInitialCorrespondences++;
		//先将这个特征点设置为不是Outlier,也就是初始化啦。
                pFrame->mvbOutlier[i] = false;

                Eigen::Matrix<double,2,1> obs;
                const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
                obs << kpUn.pt.x, kpUn.pt.y;

                g2o::EdgeSE3ProjectXYZOnlyPose* e = new g2o::EdgeSE3ProjectXYZOnlyPose();

                e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
                e->setMeasurement(obs);
                const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
                e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);

                g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                e->setRobustKernel(rk);
                rk->setDelta(deltaMono);

                e->fx = pFrame->fx;
                e->fy = pFrame->fy;
                e->cx = pFrame->cx;
                e->cy = pFrame->cy;
                cv::Mat Xw = pMP->GetWorldPos();
                e->Xw[0] = Xw.at<float>(0);
                e->Xw[1] = Xw.at<float>(1);
                e->Xw[2] = Xw.at<float>(2);

                optimizer.addEdge(e);

                vpEdgesMono.push_back(e);
                vnIndexEdgeMono.push_back(i);
            }
            else  // Stereo observation
            {
                nInitialCorrespondences++;
                pFrame->mvbOutlier[i] = false;

                //SET EDGE
                Eigen::Matrix<double,3,1> obs;
                const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
                const float &kp_ur = pFrame->mvuRight[i];
                obs << kpUn.pt.x, kpUn.pt.y, kp_ur;

                g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = new g2o::EdgeStereoSE3ProjectXYZOnlyPose();

                e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
                e->setMeasurement(obs);
                const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
                Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
                e->setInformation(Info);

                g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                e->setRobustKernel(rk);
                rk->setDelta(deltaStereo);

                e->fx = pFrame->fx;
                e->fy = pFrame->fy;
                e->cx = pFrame->cx;
                e->cy = pFrame->cy;
                e->bf = pFrame->mbf;
                cv::Mat Xw = pMP->GetWorldPos();
                e->Xw[0] = Xw.at<float>(0);
                e->Xw[1] = Xw.at<float>(1);
                e->Xw[2] = Xw.at<float>(2);

                optimizer.addEdge(e);

                vpEdgesStereo.push_back(e);
                vnIndexEdgeStereo.push_back(i);
            }
        }

    }
    }

    //如果只添加了3条边
    if(nInitialCorrespondences<3)
        return 0;

    // We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
    // At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
    //开始优化,总共优化四次,每次优化后,将观测分为outlier和inlier,outlier不参与下次优化
    // 由于每次优化后是对所有的观测进行outlier和inlier判别,因此之前被判别为outlier有可能变成inlier,反之亦然
    // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
    const float chi2Mono[4]={5.991,5.991,5.991,5.991};
    const float chi2Stereo[4]={7.815,7.815,7.815, 7.815};
    const int its[4]={10,10,10,10};    

    int nBad=0;
    for(size_t it=0; it<4; it++)
    {

        vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
        optimizer.initializeOptimization(0);
	//启动优化
        optimizer.optimize(its[it]);

        nBad=0;
	//遍历单目模式的每条边
        for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
        {
            g2o::EdgeSE3ProjectXYZOnlyPose* e = vpEdgesMono[i];

            const size_t idx = vnIndexEdgeMono[i];

            if(pFrame->mvbOutlier[idx])
            {
                e->computeError();
            }

            const float chi2 = e->chi2();

            if(chi2>chi2Mono[it])
            {                
                pFrame->mvbOutlier[idx]=true;
                e->setLevel(1);
                nBad++;
            }
            else
            {
                pFrame->mvbOutlier[idx]=false;
                e->setLevel(0);
            }

            if(it==2)
                e->setRobustKernel(0);
        }
	
	//遍历双目模式的每条边
        for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
        {
            g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = vpEdgesStereo[i];

            const size_t idx = vnIndexEdgeStereo[i];
	    
	    //没懂
            if(pFrame->mvbOutlier[idx])
            {
                e->computeError();
            }

            const float chi2 = e->chi2();

	    //没懂
            if(chi2>chi2Stereo[it])
            {
                pFrame->mvbOutlier[idx]=true;
                e->setLevel(1);
                nBad++;
            }
            //没懂
            else
            {                
                e->setLevel(0);
                pFrame->mvbOutlier[idx]=false;
            }

            if(it==2)
                e->setRobustKernel(0);
        }

        if(optimizer.edges().size()<10)
            break;
    }    

    // Recover optimized pose and return number of inliers
    g2o::VertexSE3Expmap* vSE3_recov = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(0));
    g2o::SE3Quat SE3quat_recov = vSE3_recov->estimate();
    cv::Mat pose = Converter::toCvMat(SE3quat_recov);
    pFrame->SetPose(pose);

    return nInitialCorrespondences-nBad;
}

3.4.OptimizeEssentialGraph()

//顶点为map中所有keyframe
//边为LoopConnections中的连接关系,以及essential graph中的边:1.扩展树(spanning tree)连接关系,
//2.闭环连接关系,3.共视关系非常好的连接关系(共视点为100)
void Optimizer::OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
                                       const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
                                       const LoopClosing::KeyFrameAndPose &CorrectedSim3,
                                       const map<KeyFrame *, set<KeyFrame *> > &LoopConnections, const bool &bFixScale)
{
    // Setup optimizer
    g2o::SparseOptimizer optimizer;
    optimizer.setVerbose(false);
    // typedef BlockSolver< BlockSolverTraits<7, 3> > BlockSolver_7_3; 
    //这表明误差变量为7维,误差项为3维
    g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
           new g2o::LinearSolverEigen<g2o::BlockSolver_7_3::PoseMatrixType>();
    g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);

    solver->setUserLambdaInit(1e-16);
    optimizer.setAlgorithm(solver);

    const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
    const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();

    const unsigned int nMaxKFid = pMap->GetMaxKFid();

    vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
    vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
    vector<g2o::VertexSim3Expmap*> vpVertices(nMaxKFid+1);

    const int minFeat = 100;

    // Set KeyFrame vertices
    //将map中的所有关键帧添加为g2o的顶点
    for(size_t i=0, iend=vpKFs.size(); i<iend;i++)
    {
        KeyFrame* pKF = vpKFs[i];
        if(pKF->isBad())
            continue;
        g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();

        const int nIDi = pKF->mnId;

        LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);

	//表示CorrectedSim3.find(pKF)寻找成功
        if(it!=CorrectedSim3.end())
        {
            vScw[nIDi] = it->second;
            VSim3->setEstimate(it->second);
        }
        else
        {
            Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKF->GetRotation());
            Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKF->GetTranslation());
            g2o::Sim3 Siw(Rcw,tcw,1.0);
            vScw[nIDi] = Siw;
            VSim3->setEstimate(Siw);
        }

        if(pKF==pLoopKF)
            VSim3->setFixed(true);

        VSim3->setId(nIDi);
        VSim3->setMarginalized(false);
        VSim3->_fix_scale = bFixScale;

        optimizer.addVertex(VSim3);

        vpVertices[nIDi]=VSim3;
    }


    //在g2o中已经形成误差边的两个顶点,firstid数较小的顶点
    set<pair<long unsigned int,long unsigned int> > sInsertedEdges;

    const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();

    // Set Loop edges
    //将spConnections中的关系添加为g2o中的误差边
    for(map<KeyFrame *, set<KeyFrame *> >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
    {
        KeyFrame* pKF = mit->first;
        const long unsigned int nIDi = pKF->mnId;
        const set<KeyFrame*> &spConnections = mit->second;
        const g2o::Sim3 Siw = vScw[nIDi];
        const g2o::Sim3 Swi = Siw.inverse();

        for(set<KeyFrame*>::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
        {
            const long unsigned int nIDj = (*sit)->mnId;
            if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)<minFeat)
                continue;

            const g2o::Sim3 Sjw = vScw[nIDj];
	    //关键帧i与j之间的位姿
            const g2o::Sim3 Sji = Sjw * Swi;

            g2o::EdgeSim3* e = new g2o::EdgeSim3();
            e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
            e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
            e->setMeasurement(Sji);

            e->information() = matLambda;

            optimizer.addEdge(e);

            sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
        }
    }

    // Set normal edges
    //遍历vpKFs,将vpKFs和其在spanningtree中的父节点在g2o图中连接起来形成一条误差边;
    //将vpKFs和其形成闭环的帧在g2o图中连接起来形成一条误差边
    for(size_t i=0, iend=vpKFs.size(); i<iend; i++)
    {
        KeyFrame* pKF = vpKFs[i];

        const int nIDi = pKF->mnId;

        g2o::Sim3 Swi;

        LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);

        if(iti!=NonCorrectedSim3.end())
            Swi = (iti->second).inverse();
        else
            Swi = vScw[nIDi].inverse();

        KeyFrame* pParentKF = pKF->GetParent();

        // Spanning tree edge
	//将vpKFs和其在spanningtree中的父节点在g2o图中连接起来形成一条误差边;
        if(pParentKF)
        {
            int nIDj = pParentKF->mnId;

            g2o::Sim3 Sjw;

            LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);

            if(itj!=NonCorrectedSim3.end())
                Sjw = itj->second;
            else
                Sjw = vScw[nIDj];

            g2o::Sim3 Sji = Sjw * Swi;

            g2o::EdgeSim3* e = new g2o::EdgeSim3();
            e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
            e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
            e->setMeasurement(Sji);

            e->information() = matLambda;
            optimizer.addEdge(e);
        }

        // Loop edges
        const set<KeyFrame*> sLoopEdges = pKF->GetLoopEdges();
	//将vpKFs和其形成闭环的帧在g2o图中连接起来形成一条误差边
        for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
        {
            KeyFrame* pLKF = *sit;
            if(pLKF->mnId<pKF->mnId)
            {
                g2o::Sim3 Slw;

                LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);

                if(itl!=NonCorrectedSim3.end())
                    Slw = itl->second;
                else
                    Slw = vScw[pLKF->mnId];

                g2o::Sim3 Sli = Slw * Swi;
                g2o::EdgeSim3* el = new g2o::EdgeSim3();
                el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
                el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
                el->setMeasurement(Sli);
                el->information() = matLambda;
                optimizer.addEdge(el);
            }
        }

        // Covisibility graph edges
        //pKF与在Covisibility graph中与pKF连接,且共视点超过minFeat的关键帧,形成一条误差边(如果之前没有添加过的话)
        const vector<KeyFrame*> vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
        for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
        {
            KeyFrame* pKFn = *vit;
	    //避免和前面的边添加重复
            if(pKFn && pKFn!=pParentKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
            {
                if(!pKFn->isBad() && pKFn->mnId<pKF->mnId)
                {
		    //为避免重复添加,先查找
                    if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
                        continue;

                    g2o::Sim3 Snw;

                    LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);

                    if(itn!=NonCorrectedSim3.end())
                        Snw = itn->second;
                    else
                        Snw = vScw[pKFn->mnId];

                    g2o::Sim3 Sni = Snw * Swi;

                    g2o::EdgeSim3* en = new g2o::EdgeSim3();
                    en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
                    en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
                    en->setMeasurement(Sni);
                    en->information() = matLambda;
                    optimizer.addEdge(en);
                }
            }
        }
    }

    // Optimize!
    optimizer.initializeOptimization();
    optimizer.optimize(20);

    unique_lock<mutex> lock(pMap->mMutexMapUpdate);

    // SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
    //更新优化后的闭环检测位姿
    for(size_t i=0;i<vpKFs.size();i++)
    {
        KeyFrame* pKFi = vpKFs[i];

        const int nIDi = pKFi->mnId;

        g2o::VertexSim3Expmap* VSim3 = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(nIDi));
        g2o::Sim3 CorrectedSiw =  VSim3->estimate();
        vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
        Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
        Eigen::Vector3d eigt = CorrectedSiw.translation();
        double s = CorrectedSiw.scale();

        eigt *=(1./s); //[R t/s;0 1]

        cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);

        pKFi->SetPose(Tiw);
    }

    // Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
    for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
    {
        MapPoint* pMP = vpMPs[i];

        if(pMP->isBad())
            continue;

        int nIDr;
        if(pMP->mnCorrectedByKF==pCurKF->mnId)
        {
            nIDr = pMP->mnCorrectedReference;
        }
        else
        {
            KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
            nIDr = pRefKF->mnId;
        }


        g2o::Sim3 Srw = vScw[nIDr];
        g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];

        cv::Mat P3Dw = pMP->GetWorldPos();
        Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
        Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));

        cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
        pMP->SetWorldPos(cvCorrectedP3Dw);

        pMP->UpdateNormalAndDepth();
    }
}

3.5. OptimizeSim3()

// if bFixScale is true, optimize SE3 (stereo,rgbd), Sim3 otherwise (mono)
/**
 * @param pKF1
 * @param vpMatches1 pKF1的特征点与pKF2的mappoint匹配情况
 * @return 
 */
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches1, g2o::Sim3 &g2oS12, const float th2, const bool bFixScale)
{
    g2o::SparseOptimizer optimizer;
    //  typedef BlockSolver< BlockSolverTraits > BlockSolverX;
    //这表明误差变量和误差项的维度是动态的
    g2o::BlockSolverX::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();

    g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    // Calibration
    const cv::Mat &K1 = pKF1->mK;
    const cv::Mat &K2 = pKF2->mK;

    // Camera poses
    const cv::Mat R1w = pKF1->GetRotation();
    const cv::Mat t1w = pKF1->GetTranslation();
    const cv::Mat R2w = pKF2->GetRotation();
    const cv::Mat t2w = pKF2->GetTranslation();

    // Set Sim3 vertex
    //添加sim3位姿顶点误差变量
    g2o::VertexSim3Expmap * vSim3 = new g2o::VertexSim3Expmap();    
    vSim3->_fix_scale=bFixScale;
    //设置顶点的初始值
    vSim3->setEstimate(g2oS12);
    vSim3->setId(0);
    vSim3->setFixed(false);
    //将内参导入顶点
    vSim3->_principle_point1[0] = K1.at<float>(0,2);
    vSim3->_principle_point1[1] = K1.at<float>(1,2);
    vSim3->_focal_length1[0] = K1.at<float>(0,0);
    vSim3->_focal_length1[1] = K1.at<float>(1,1);
    vSim3->_principle_point2[0] = K2.at<float>(0,2);
    vSim3->_principle_point2[1] = K2.at<float>(1,2);
    vSim3->_focal_length2[0] = K2.at<float>(0,0);
    vSim3->_focal_length2[1] = K2.at<float>(1,1);
    optimizer.addVertex(vSim3);

    // Set MapPoint vertices
    const int N = vpMatches1.size();
    //获得 pKF1的所有mappoint
    const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
    vector<g2o::EdgeSim3ProjectXYZ*> vpEdges12;
    vector<g2o::EdgeInverseSim3ProjectXYZ*> vpEdges21;
    vector<size_t> vnIndexEdge;

    vnIndexEdge.reserve(2*N);
    vpEdges12.reserve(2*N);
    vpEdges21.reserve(2*N);

    const float deltaHuber = sqrt(th2);

    int nCorrespondences = 0;

    //将匹配转化为归一化3d点作为g2o的顶点
    for(int i=0; i<N; i++)
    {
        if(!vpMatches1[i])
            continue;

        MapPoint* pMP1 = vpMapPoints1[i];
        MapPoint* pMP2 = vpMatches1[i];

        const int id1 = 2*i+1;
        const int id2 = 2*(i+1);

        const int i2 = pMP2->GetIndexInKeyFrame(pKF2);

        if(pMP1 && pMP2)
        {
            if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
            {
                g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
                cv::Mat P3D1w = pMP1->GetWorldPos();
                cv::Mat P3D1c = R1w*P3D1w + t1w;
                vPoint1->setEstimate(Converter::toVector3d(P3D1c));
                vPoint1->setId(id1);
                vPoint1->setFixed(true);
                optimizer.addVertex(vPoint1);

                g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
                cv::Mat P3D2w = pMP2->GetWorldPos();
                cv::Mat P3D2c = R2w*P3D2w + t2w;
                vPoint2->setEstimate(Converter::toVector3d(P3D2c));
                vPoint2->setId(id2);
                vPoint2->setFixed(true);
                optimizer.addVertex(vPoint2);
            }
            else
                continue;
        }
        else
            continue;

        nCorrespondences++;

        // Set edge x1 = S12*X2
	//添加误差项边
        Eigen::Matrix<double,2,1> obs1;
        const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
        obs1 << kpUn1.pt.x, kpUn1.pt.y;

        g2o::EdgeSim3ProjectXYZ* e12 = new g2o::EdgeSim3ProjectXYZ();
	//将e12边和vertex(id2)绑定
        e12->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id2)));
        e12->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
	//设定初始值
        e12->setMeasurement(obs1);
        const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
        e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);

        g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
        e12->setRobustKernel(rk1);
        rk1->setDelta(deltaHuber);
        optimizer.addEdge(e12);

        // Set edge x2 = S21*X1
        Eigen::Matrix<double,2,1> obs2;
        const cv::KeyPoint &kpUn2 = pKF2->mvKeysUn[i2];
        obs2 << kpUn2.pt.x, kpUn2.pt.y;

	//注意这个的边类型和上面不一样
        g2o::EdgeInverseSim3ProjectXYZ* e21 = new g2o::EdgeInverseSim3ProjectXYZ();

        e21->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id1)));
        e21->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
        e21->setMeasurement(obs2);
        float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
        e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);

        g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
        e21->setRobustKernel(rk2);
        rk2->setDelta(deltaHuber);
        optimizer.addEdge(e21);

        vpEdges12.push_back(e12);
        vpEdges21.push_back(e21);
        vnIndexEdge.push_back(i);
    }

    // Optimize!
    optimizer.initializeOptimization();
    optimizer.optimize(5);

    // Check inliers
    //把不是inliner的边剔除出去
    int nBad=0;
    for(size_t i=0; i<vpEdges12.size();i++)
    {
        g2o::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
        g2o::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
        if(!e12 || !e21)
            continue;

        if(e12->chi2()>th2 || e21->chi2()>th2)
        {
            size_t idx = vnIndexEdge[i];
            vpMatches1[idx]=static_cast<MapPoint*>(NULL);
            optimizer.removeEdge(e12);
            optimizer.removeEdge(e21);
            vpEdges12[i]=static_cast<g2o::EdgeSim3ProjectXYZ*>(NULL);
            vpEdges21[i]=static_cast<g2o::EdgeInverseSim3ProjectXYZ*>(NULL);
            nBad++;
        }
    }

    int nMoreIterations;
    if(nBad>0)
        nMoreIterations=10;
    else
        nMoreIterations=5;

    if(nCorrespondences-nBad<10)
        return 0;

    // Optimize again only with inliers
    //剔除边后再次优化
    optimizer.initializeOptimization();
    optimizer.optimize(nMoreIterations);

    int nIn = 0;
    //看哪些匹配是inliner
    for(size_t i=0; i<vpEdges12.size();i++)
    {
        g2o::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
        g2o::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
        if(!e12 || !e21)
            continue;

        if(e12->chi2()>th2 || e21->chi2()>th2)
        {
            size_t idx = vnIndexEdge[i];
            vpMatches1[idx]=static_cast<MapPoint*>(NULL);
        }
        else
            nIn++;
    }

    // Recover optimized Sim3
    g2o::VertexSim3Expmap* vSim3_recov = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(0));
    g2oS12= vSim3_recov->estimate();

    return nIn;
}

你可能感兴趣的:(SLAM)