相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像

机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像

  • 一、针孔相机模型
  • 二、双目相机模型
  • 三、OpenCV实例实现用Pangolin生成视差图像和3D点云图像
    • 1.新建一个文件夹(我的名字是test)
    • 2.在test文件夹下新建一个空的CMakeLists.txt文件
    • 3.在test文件夹下打开新的终端,编译
    • 4.在test目录下创建一个main.cpp文件
    • 5.运行方法:

一、针孔相机模型

相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第1张图片
其中P点是三维空间中的一点,P’点是P在图片上的投影点,O是相机坐标系的原点,O’是物理成像平面的原点。可得Z/f=X/X’=Y/Y’,即:X’=fX/Z,Y’=fY/Z,其中[X,Y,Z]是P点在相机坐标系的坐标。

二、双目相机模型

双目相机一般由水平放置的左眼相机和右眼相机组成,可以把两个相机都看作针孔相机。因为是水平放置的,意味着两个相机的光圈中心都位于x轴上,两者之间的距离称为双目相机的基线(Baseline)。双目相机的成像模型如下:
相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第2张图片

三、OpenCV实例实现用Pangolin生成视差图像和3D点云图像

1.新建一个文件夹(我的名字是test)

相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第3张图片

2.在test文件夹下新建一个空的CMakeLists.txt文件

相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第4张图片

3.在test文件夹下打开新的终端,编译

cmake后会生成很多编译的中间文件以及makefile文件,所以一般建议新建一个新的目录,目录名为build.

make根据生成makefile文件,编译程序。

mkdir build
cd build
cmake ..
make

相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第5张图片

4.在test目录下创建一个main.cpp文件

相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第6张图片
注意:代码中图片的存放位置要放在build目录下

相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第7张图片

#include 
#include 
#include 
#include 
#include 
#include
#include 
using namespace std;
using namespace Eigen;
using namespace cv;

//高博用pangolin中显示点云
void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud);
int main ( int argc, char** argv )
{
    double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;// 内参
    double b = 0.573;// 基线
        
    cout << "OpenCV version : " << CV_VERSION << endl;
   
    Mat leftImg=imread("left.png",0);
    Mat rightImg=imread("right.png",0);
  
    imshow ( "leftImg", leftImg);
    imshow ( "rightImg", rightImg);
    waitKey ( 0 );
    
    //OpenCV实现的SGBM立体匹配算法
    Ptr<StereoSGBM> sgbm = StereoSGBM::create(
        0,//minDisparity 最小视差
        96, //numDisparities 视差搜索范围,值必需为16的整数倍。最大搜索边界=最小视差+视差搜索范围
        9, //blockSize 块大小
        //8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
        8 * 9 * 9, //P1 控制视差变化平滑性的参数。P1、P2的值越大,视差越平滑。P1是相邻像素点视差增/1 时的惩罚系数;P2是相邻像素点视差变化值大于1时的惩罚系数。P2必须大于P1。
        //32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize
        32 * 9 * 9, //P2
        1, //disp12MaxDiff 左右一致性检测最大容许误差阈值。
        63, //preFilterCap,预处理时映射参数
        10, //uniquenessRatio 唯一性检测参数,
        100, //speckleWindowSize 视差连通区域像素点个数的大小。对于每一个视差点,当其连通区域的像素点个数小于speckleWindowSize时,认为该视差值无效,是噪点。
        32//speckleRange 视差连通条件,在计算一个视差点的连通区域时,当下一个像素点视差变化绝对值大于speckleRange就认为下一个视差像素点和当前视差像素点是不连通的。
    );
    
    Mat disparity_sgbm, disparity;
    sgbm->compute(leftImg, rightImg, disparity_sgbm); //计算视差图
    disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);//得到视差图
    
    cv::imshow("disparity", disparity / 96.0);
    cv::waitKey(0);
    
    
    
    // 生成点云
    
    vector<Vector4d, Eigen::aligned_allocator<Vector4d>> pointcloud;
        // 如果机器慢,把后面的v++和u++改成v+=2, u+=2
    for (int v = 0; v < leftImg.rows; v++)
        for (int u = 0; u < leftImg.cols; u++) {
            if (disparity.at<float>(v, u) <= 0.0 || disparity.at<float>(v, u) >= 96.0) 
                continue;
            Vector4d point(0, 0, 0, leftImg.at<uchar>(v, u) / 255.0); // 前三维为xyz,第四维为颜色
            // 根据双目模型计算 point 的位置
            double x = (u - cx) / fx;
            double y = (v - cy) / fy;
            double depth = fx * b/(disparity.at<float>(v, u));
            point[0] = x * depth;
            point[1] = y * depth;
            point[2] = depth;
            pointcloud.push_back(point);
        }
        
    cv::imshow("disparity", disparity / 96.0);
    cv::waitKey(0);
    // 画出点云
    showPointCloud(pointcloud);
    return 0;
}


void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud) 
{
    pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    pangolin::OpenGlRenderState s_cam(
        pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
        pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );
    pangolin::View &d_cam = pangolin::CreateDisplay()
        .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
        .SetHandler(new pangolin::Handler3D(s_cam));
    while (pangolin::ShouldQuit() == false) 
    {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
        glPointSize(2);
        glBegin(GL_POINTS);
        for (auto &p: pointcloud) {
            glColor3f(p[3], p[3], p[3]);
            glVertex3d(p[0], p[1], p[2]);
        }
        glEnd();
        pangolin::FinishFrame();
        usleep(5000);   // sleep 5 ms
    }
    
    return;
}

5.运行方法:

在build目录下,打开终端

./imagebinoculartest 

在这里插入图片描述
结果如下:

原始左右两图:

SGBM计算得到的视差图:
相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第8张图片
根据视差图得到的点云图:
相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第9张图片
可以用鼠标左键点击,让它旋转,让实验效果更突出。
相机模型和双目立体匹配完成一个基于KITTI立体相机采集图片的立体图像匹配程序,生成视差图像和3D点云图像_第10张图片

你可能感兴趣的:(ROS学习)