- Ubuntu: 配置OpenCV环境
达柳斯·绍达华·宁
ubuntuopencvlinux
从从Ubuntu系统安装opencv_ubuntu安装opencv-CSDN博客文章浏览阅读2.3k次,点赞4次,收藏14次。开源计算机视觉(OpenCV)是一个主要针对实时计算机视觉的编程函数库。OpenCV的应用领域包括:2D和3D功能工具包、运动估计、面部识别系统、手势识别、人机交互、移动机器人、动作理解、物体识别、分割和识别、实体影像立体视觉:来自两个摄像机的深度感知、运动跟踪、增强现实等
- 计算机视觉领域顶级会议和顶级期刊汇总
AdaCoding
论文阅读与写作计算机视觉人工智能
计算机视觉领域顶级会议和顶级期刊汇总一、计算机视觉顶会一档二档二、计算机视觉顶刊一、计算机视觉顶会一档1、ICCV,全称:IEEE/CVFInternationalConferenceonComputerVision国际计算机视觉会议,是公认的三个会议中级别最高的,收录率一般在20%左右,由IEEE主办。收录论文的内容:底层视觉与感知,颜色、光照与纹理处理,分割与聚合,运动与跟踪,立体视觉与运动结
- 立体视觉几何 (三)
dc爱傲雪和技术
计算机视觉数码相机人工智能
立体视觉系统概述误差分析考虑对应于深度Z的视差d的匹配对。我们想要评估ΔZ,即视差误差引起的深度误差。将Z对d求导,得到:立体视觉中基线(baseline)、焦距(focallength)和立体重建的准确性之间的基本关系。“深度:立体重建的分辨率随着深度呈二次减小。这意味着立体视觉的适用性受到严重限制。”-这句话指出,随着物体距离相机的深度增加,立体重建的分辨率会二次减小。这意味着在较远的距离上,
- 双目视觉测宽仪系列 模拟人眼高精测量!
蓝鹏测控
其他制造
双目视觉测宽仪系列基于机器视觉原理,两个工业相机就像人的双眼,可以形成立体视觉,这样就可以得到足够的信息判断被测物的距离,修正和消除距离变化对测量的影响,在线检测生产线上产品的宽度值。可广泛应用于轧制材料(热轧、冷轧)、机械部件、钢板、铁板、金属板、厚板等板材类产品的在线检测。具有非接触、实时测量、精度高等优点。技术参数:测量范围:500-3000mm(定制)测量方式:双工业相机,自发光/光源补光
- 科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)
JANGHIGH
科普类无人驾驶自动驾驶
科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)在立体视觉领域,有许多立体视觉软件和工具可以帮助工程师进行基线设计、系统测试和优化。以下是一些常用的立体视觉软件和工具:Meshroom:这是一个基于AliceVision摄影测量计算机视觉框架的免费开源三维重建软件。Meshroom可以处理大规模的图像数据集,进行立体视觉重建。OpenMVG(OpenMultipleViewGeom
- 三维重建开源函数库或者工具
冰清-小魔鱼
遥感GIS计算机视觉目标检测人工智能
三维重建使用摄影测量、计算机视觉技术,利用立体视觉恢复真实相机姿态,获取现实物体的三维信息,并进行虚拟三维场景重现。1、OpenDroneMapODM是一个基于航空影像的三维重建集成工具箱,利用多幅航空影像恢复相机姿态和3D场景,可以生产点云、三维贴图模型、正射影像、数字表面模型、数字高程模型等,提供Web接口,支持CUDA加速,基础函数库使用OpenSfM,OpenMVS,PDAL,Entwin
- 【三维重建】双目立体视觉
Patrick star`
人工智能
通过极几何可以求得极线,现在我们需要将左边的图变成右边的平行视图。所有的极线都经过极点(e/e'),如果极点位于无穷远处,那所有的极线都平行。(极几何的基础知识可以参考这篇文章:【三维重建】对极几何-CSDN博客)平行视图中,可以利用视差就得深度,视差越小深度越深。如何得到平行视图呢?
- [Python图像处理] 使用OpenCV创建深度图
AI technophile
Python图像处理实战python图像处理计算机视觉
使用OpenCV创建深度图双目视觉创建深度图相关链接双目视觉在传统的立体视觉中,两个摄像机彼此水平移动,用于获得场景上的两个不同视图(作为立体图像),就像人类的双目视觉系统:通过比较这两个图像,可以以视差的形式获得相对深度信息,该视差编码对应图像点的水平坐标的差异。两个立体图像中单个像素的位移量称为视差(disparity),像素的视差与其在场景中的深度成反比。可以用灰度值对每个像素的视差进行编码
- 11. 双目视觉之立体视觉基础
宛如新生
slam中的标定问题数码相机
目录1.深度恢复1.1单目相机缺少深度信息1.2如何恢复场景深度?1.3深度恢复的思路2.对极几何约束2.1直观感受2.2数学上的描述1.深度恢复1.1单目相机缺少深度信息之前学习过相机模型,最经典的就是小孔成像模型。我们知道相机通过小孔成像模型对世界点的观测是缺少深度信息的。我们得到的只是世界点在相机平面上的一个投影。如下图,世界点P只要是在那条红色线上,他在相机上的成像位置就是P‘,所以我们无
- 12. 双目视觉之极线矫正
宛如新生
slam中的标定问题数码相机
目录1.为何要进行极线矫正?2.极线矫正过程。1.为何要进行极线矫正?之前的文章立体视觉基础中介绍单目相机无法获得深度信息,我们可以通过多个相机来实现立体视觉。通过两个相机对某场景同时观测时,当我们知道了相机的内(外)参以及两者之间的基线,然后通过某种方式找到两相机对同一世界点的观测的关联关系(类似特征匹配),就可以计算出视差,最终通过下列公式计算出观测到的世界点的深度。我们假设双目相机已经标定完
- 第六篇【传奇开心果系列】Python的OpenCV库技术点案例示例:摄像头标定
传奇开心果编程
Python库OpenCV技术点案例示例短博文opencv计算机视觉python
传奇开心果博文系列系列博文目录Python的OpenCV库技术点案例示例系列博文目录一、前言二、OpenCV摄像头标定介绍三、摄像头内外参数标定示例代码和扩展四、立体视觉标定示例代码和扩展五、归纳总结系列博文目录Python的OpenCV库技术点案例示例系列博文目录一、前言OpenCV摄像头标定:包括摄像头内外参数标定、立体视觉标定等功能。二、OpenCV摄像头标定介绍OpenCV是一个广泛使用的
- 双目立体视觉——视差图(stereo matching)三种相似度算法实现
7lingqi7
1024程序员节python笔记学习
目录双目立体视觉的理解:平行视图的极几何(第二种实现视差图的思路)图像校正(cameracalibration)实现——相似度匹配,视差计算重要影响参数实验报告讨论部分SGBM算法示例,这个效果更好,速度也更快。【双目视觉】SGBM算法应用(Python版)_落叶随峰的博客-CSDN博客任务:生成视差图关键词:视差原理(平行视图的极几何),图像校正,相似度匹配,视差计算和匹配图片数据集:visio
- 立体视觉几何 (二)
dc爱傲雪和技术
计算机视觉
1.视差2.立体匹配立体匹配的基本概念:匹配目标:在立体匹配中,主要目标是确定左图像中像素的右图像中的对应像素。这个对应像素通常位于相同的行。视差(Disparity):视差d是右图像中对应像素xr和左图像中像素xl之间的水平位置差。视差是深度信息的关键指标。匹配方法:方法涉及在左图像中以某个像素为中心取一个窗口W,然后将这个窗口沿水平方向平移视差d,并将其放置在右图像中。接着比较左图像中窗口W和
- 立体视觉几何(一)
dc爱傲雪和技术
计算机视觉
1.什么是立体视觉几何立体视觉=对应+重建:•对应:给定一幅图像中的点pl,找到另一幅图像中的对应点pr。•重建:给定对应关系(pl,pr),计算空间中相应点的3D坐标P。立体视觉:从图像中的投影恢复场景中点的三维位置的过程类型:基于窗口/局部的算法和全局算法三角测量:给定pl,我们知道点P位于连接pl和左光心Cl的直线Ll上。**假设我们确切地知道相机的参数,我们可以显式计算Ll和Lr的参数。*
- 重大突破!单向结构光系统校准方法,平面测量精度提高2.5倍,球面测量精度提高2倍
3DCV
学习计算机视觉人工智能算法深度学习平面
作者:小柠檬|来源:3DCV在公众号「3DCV」后台,回复「原论文」获取论文本文提出了一种新颖的单向结构光系统标定方法,该方法利用白色平面作为标定目标,而不是具有圆点或方格方块等物理特征的传统目标。该方法通过采用具有投影随机图案和平面拟合的立体视觉来重建白色平面。为了促进校准过程,使用了辅助摄像机和辅助投影仪。实验结果表明,所提出的方法对于单向结构光系统具有较高的标定精度。原文链接:重大突破!单向
- vslam论文24:ESVIO: 基于事件相机的双目VIO(RAL 2023)
xsyaoxuexi
视觉SLAM论文阅读c++人工智能学习笔记
摘要异步输出低延迟事件流的事件相机为具有挑战性的情况下的状态估计提供了很大的机会。尽管近年来基于事件的视觉里程测量技术得到了广泛的研究,但大多数都是基于单目的,而对立体事件视觉的研究很少。在本文中,我们介绍了ESVIO,这是第一个基于事件的立体视觉惯性里程计,它利用了事件流、标准图像和惯性测量的互补优势。我们建议的pipeline包括ESIO(纯基于事件的)和ESVIO(带有图像辅助的事件),它们
- OpenCV-Python(43):姿势估计
图灵追慕者
opencv-pythonopencvcalib3D模块姿势估计摄像机标定立体视觉3D重构
目标学习了解calib3D模块学习在图像中创建3D效果calib3D模块OpenCV-Python的calib3D模块是OpenCV库中的一个重要模块,用于摄像头标定和三维重建等计算机视觉任务。该模块提供了一些函数和类,用于摄像头标定、立体视觉和三维重建等方面的操作。下面是一些calib3D模块常用的函数和类的介绍:1.findChessboardCorners():用于在一张图片中查找棋盘格角点
- 工业相机相关概念词介绍:ISP算法、线阵相机、常用术语
明月醉窗台
应用工具使用介绍图像处理相关算法数码相机接口隔离原则算法计算机视觉图像处理
工业相机相关概念词介绍:ISP算法、线阵相机、常用术语ISP基本框架及算法介绍相机的常用设置50个常用术语关于立体视觉相关算法,可参考我的专栏:https://blog.csdn.net/yohnyang/category_11720857.html0.ISP基本框架及算法介绍ISP(ImageSignalProcessor),即图像处理,主要作用是对前端图像传感器输出的信号做后期处理,主要功能有
- 使用opencv做双目测距(相机标定+立体匹配+测距)
AAI机器之心
opencv数码相机人工智能pytorch机器学习计算机视觉
最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼。所以今天我想做的,是尽量给大家一个明确的阐述,并且能够上手做出来。一、标定首先我们要对摄像头做标定,具体的公式推导在learningopencv中有详细的解释,这
- ZED使用指南(八)Depth Sensing
Happy_Cabbage
ZED2计算机视觉人工智能
ZED立体相机再现了人类双目视觉的工作方式。通过比较左眼和右眼看到的两种视图,不仅可以推断深度,还可以推断空间中的3D运动。ZED立体相机可以捕捉到场景的高分辨率3D视频,通过比较左右图像之间的像素位移可以估计深度和运动。深度感知深度感知是指确定物体之间的距离,以三维的角度看世界。到目前为止,深度传感器仅限于近距离和室内的深度感知,限制了其在手势控制和身体跟踪方面的应用。ZED是第一个使用立体视觉
- 双目立体视觉进入“上车”时代,这家厂商如何“领跑”全球
高工智能汽车
汽车
车载双目立体视觉正在迎来爆发式增长的窗口期。《高工智能汽车》了解到,继大众、丰田、零跑等越来越多主机厂开始从单目切换为双目方案之后,小鹏汽车也已经布局双目立体感知方案,以提高L2及以上智能驾驶的安全性和可靠性。现阶段,以NOA为代表的高阶智能驾驶系统,已经成为了车企决战智能化下半场竞争的关键。根据高工智能汽车研究院最新发布数据显示,2023年1-9月,中国市场(不含进出口)乘用车前装标配(软硬件)
- OpenCV 中 core, imgcodecs, imgproc, calib3d, highgui, dnn, features2d, flann, gapi, ml, objc等分别是什么?
型者无疆
opencv3ddnn
下面是关于这些OpenCV模块的简要说明:core:OpenCV核心功能模块,提供了基本的数据结构、图像处理函数和数学运算等常见功能。imgcodecs:图像编解码模块,用于读取、写入和编解码各种图像格式,如JPEG、PNG等。imgproc:图像处理模块,提供了图像处理和操作的函数,包括滤波、边缘检测、几何变换等。calib3d:相机标定和三维重建模块,用于相机标定、立体视觉、姿态估计和三维物体
- Active Stereo Without Pattern Projector论文精读
你不困我困
论文精读深度学习计算机视觉
1.背景补充主动立体相机和被动立体相机的主要区别在于它们获取立体视觉信息的方式主动立体相机12:主动立体视觉是指寻找最佳的视角去重建目标或者场景1。主动视觉的实现方式通常有:改变环境中的光照条件、改变相机的视角、移动相机自身位置等,其目的是提高感知结果的质量1。主动立体视觉还包括没有先验的场景信息去主动识别或是跟踪,存在与环境的交互1。结构光法采用主动投射已知图案的方法来实现匹配特征点,达到较高的
- RC-MVSNet:无监督的多视角立体视觉与神经渲染--论文笔记(2022年)
知识推荐号
MVS论文笔记论文阅读图像处理python三维重建
RC-MVSNet:无监督的多视角立体视觉与神经渲染--论文笔记(2022年)摘要1引言2相关工作2.1基于监督的MVS2.2无监督和自监督MVS2.3多视图神经渲染3实现方法3.1无监督的MVS网络3.2参考试图合成3.3深度渲染一致性Chang,D.etal.(2022).RC-MVSNet:UnsupervisedMulti-ViewStereowithNeuralRendering.In:
- PCL深度图像 RangeImage
Ivy_daisy
PCLPCLRangeImage
http://www.cnblogs.com/li-yao7758258/p/6474699.html目前深度图像的获取方法有激光雷达深度成像法,计算机立体视觉成像,坐标测量机法,莫尔条纹法,结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术,深度图像的边缘检测技术,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,深
- 【2021集创赛】基于ARM-M3的双目立体视觉避障系统 SOC设计
极术社区
IC技术竞赛作品分享arm开发
本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。团队介绍参赛单位:上海电力大学队伍名称:骇行队总决赛奖项:二等奖1.摘要随着信息技术的发展,AGV(AutomatedGuidedVehicle,AGV)无人自动导航小车已被广泛应用于智能制造、智慧物流等场景。AGV搬运车的导航系统主要利用视觉、激光雷达等传感器,其主控系统大多使用多个芯片及其复杂嵌入式系统实现,成
- 《视觉SLAM十四讲》-- 建图
算法导航
视觉SLAM十四讲SLAM算法计算机视觉
11建图11.1概述(1)地图的几类用处:定位:导航:机器人在地图中进行路径规划;避障重建交互:人与地图之间的互动(2)几类地图稀疏地图稠密地图语义地图11.2单目稠密重建11.2.1立体视觉(1)稠密重建中,我们需要知道每个像素(或大部分像素)的距离,对此有以下几种方案:使用单目相机,估计相机运动,并且三角化计算像素的距离;使用双目相机,利用左右目的视差计算像素的距离;使用RGB-D相机直接获取
- halcon——缺陷检测常用方法总结(光度立体)
明月清风_@
Halcon计算机视觉人工智能深度学习python机器学习
引言机器视觉中缺陷检测分为一下几种:blob分析+特征模板匹配(定位)+差分光度立体特征训练测量拟合频域+空间域结合:halcon——缺陷检测常用方法总结(频域空间域结合)-唯有自己强大-博客园(cnblogs.com)深度学习前一篇总结了频域与空间域的结合使用,本篇就光度立体的缺陷检测做一个总结。光度立体在工业领域,表面检测是一个非常广泛的应用领域。在halcon中,使用增强的光度立体视觉方法,
- Deep Learning for Monocular Depth Estimation: A Review.基于深度学习的深度估计
qaaaaaaz
计算机视觉深度学习人工智能
传统的深度估计方法通常是使用双目相机,计算两个2D图像的视差,然后通过立体匹配和三角剖分得到深度图。然而,双目深度估计方法至少需要两个固定的摄像机,当场景的纹理较少或者没有纹理的时候,很难从图像中捕捉足够的特征来匹配。所以最近单目深度估计发展的越来越快,但是由于单目图像缺乏可靠的立体视觉关系,因此在三维空间中回归深度本质上是一种不适定问题。单目图像采用二维形式来重新反射三维世界,然而,有一维场景叫
- MVSNet论文笔记
知识推荐号
MVS论文笔记论文阅读图像处理多视图三维重建深度学习
MVSNet论文笔记摘要1引言2相关基础2.1多视图立体视觉重建(MVSReconstruction)2.2基于学习的立体视觉(LearnedStereo)2.3基于学习的多视图的立体视觉(LearnedMVS)Yao,Y.,Luo,Z.,Li,S.,Fang,T.,Quan,L.(2018).MVSNet:DepthInferenceforUnstructuredMulti-viewStereo
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数