- GEO数据挖掘学习笔记二
slim_zhang
学习教程来源于《手把手教你GEO数据库差异基因分析》本次学习笔记内容为通过GEO2R在线工具进行差异基因分析通过了解,个人觉得这个方法相比R语言的优势是更普适性,以及更加“傻瓜”,方便学不明白R语言的同学。第一步:同R语言,找到相关的数据集第二步:点进页面详情,进行GEO2R在线分析第三步:选择分组信息,点击分析第四步:下载数据,得到差异基因数据集,如果仅得到差异基因即可,可不进行后续操作。第五步
- 数据挖掘学习笔记2-数据预处理
irony_202
数据挖掘
一、数据清洗1.数据缺失:①忽视(删除)仅占比较小(2-3%)时可用②填充——固定填充;根据经验、样本猜测2.离群点(正常)V.S.异常点离群点是相对概念(根据平均距离算)3.重复数据①使用滑动窗口,窗口内两两比较(假设:高度疑似的数据是紧挨的→生成KEY(根据相关知识),按key排序)二、数据转换1.类型转换2.标准化(编码化,需要注意非顺序类的编码化,如果默认按0、1、2编码,则暗含了距离的属
- 【数据挖掘学习笔记】数据挖掘中主要问题有哪些?
Shaw_tingshu
#数据挖掘数据挖掘
数据挖掘是一个动态、强势快速扩展的领域。数据挖掘研究的主要问题,可划分为五组:挖掘方法、用户交互、有效性与可伸缩性、数据类型的多样性、数据挖掘与社会。一、挖掘方法目前大牛们已经开发了一些数据挖掘方法,涉及到新的知识类型的研究、多维空间挖掘、集成其他领域的方法以及数据对象之间语义捆绑考虑。此外,数据挖掘应该考虑诸如数据的不确定性、噪声和不完全性等问题。有些数据挖掘方法探索如何使用用户指定的度量评估所
- 数据挖掘学习笔记之决策树
阳光里哭泣的狗
决策树算法数据挖掘python机器学习
决策树从数据中产生决策树的数据学习称为决策数学习,简称决策数.决策树是数据挖掘中最常用的一种分类和预测技术,使用其可建立分类和预测模型;它的形状如同一棵树,每个节点对于与对象的某个属性,每个分支对应这个属性的某个可能取值,每个叶节点表示经历从根节点到该叶节点这条路径上的对象的值;决策树模型(图片来自于网络)决策树算法的关键技术决策树算法中有以下三项关键技术:1.选择最能区别数据集中实例属性的方法2
- 数据挖掘学习笔记(1)
sherrymi
学习笔记数据挖掘
数据挖掘相关概念当被存储在本地时的数据称作数据,当把数据经过加工处理,它们转变成了有用的信息。如果信息经过合理的组合能够产生价值,特别是商业价值,此时就可以称其为知识。数据挖掘的过程就是数据加工处理变成信息,最后转化为知识的过程。数据挖掘的一些主要工具:商用的MATLAB、IBMIntelligentMiner、SASEnterpriseMiner、SPSSClementine和开源工具Weka。
- 数据挖掘学习笔记:余弦相似性
code_carrot
数据挖掘
为何选择余弦度量相似性:定义余弦相似性(余弦相似度):通过计算两个向量的夹角余弦值来评估他们的相似性。令x,y是两个待比较的向量,使用余弦度量作为相似性函数:其中,是向量的欧几里得范数,定义为,从概念上讲,就是向量x的长度。0度角的余弦值是1,而其他任何角度的余弦值都不大于1;并且其最小值是-1。从而两个向量之间的角度的余弦值确定两个向量是否大致指向相同的方向。两个向量有相同的指向时,余弦相似度的
- 数据挖掘学习笔记1-相关拓展学习资料
irony_202
数据挖掘数据仓库人工智能
一、数据挖掘教材:1.数据挖掘概念/技术(黑书)2.模式分类3.美丽数据(实际案例)二、国际会议:ICDMICMEICMLPCKDDACKDD三、期刊:TKDE(数据工程上的技术和知识)NNLS(神经网络和学习系统)四、公共数据集:UCI五、数据挖掘软件:weka(开源)数据挖掘前:数据预处理——数据清洗(填充、剔除无效数据)、数据类型转换、标准化数据挖掘后:数据、结论可视化:利用软件(群友推荐o
- 数据挖掘学习笔记——GEO数据库:芯片数据分析
福旺旺
生物信息学数据挖掘学习数据库
数据挖掘数据挖掘学习笔记——GEO数据库:芯片数据分析文章目录数据挖掘一、芯片基础知识1.1、背景二、GEO数据库概述2.1、基础简介2.2、检索页面展示三、GSE项目的三种下载方式3.1、主页下载原始数据3.2、主页下载表达矩阵3.3、GEOquery包下载表达量四、基因名与探针ID的转换技巧4.1、获取对照关系4.1.1、利用Bioconductor中汇总的R包4.1.2、利用平台的数据4.1
- 数据挖掘学习笔记(一)
陨落的小白
数据挖掘体系介绍数据挖掘是什么?什么是数据挖掘,简而言之,对数据进行挖掘,从中提取出有效的信息。一般我们会把这种信息通过概念、规则、规律、模式等有组织的方式展示出来,形成所谓的知识。特别是在这个大数据时代,当数据多到一定程度,统计学原理会让一些内在的、不易察觉的规律慢慢放大、展示出来,而数据挖掘,就是希望在这种大数据背景下,以一种更加高效的方式,找到这些潜在的规律。光有数据是不够的,只有形成知识,
- Python数据挖掘学习笔记(4)KNN分类算法----以简单的手写数字的图像识别为例
ZYH@Smart3S
PythonPythonKNN图像识别
一、相关理论:KNN算法,又叫邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。KNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依
- python导入鸢尾花数据集_python数据挖掘学习笔记】十九.鸢尾花数据集可视化、线性回归、决策树花样分析...
weixin_39565390
python导入鸢尾花数据集
#2018-04-0516:57:26AprilThursdaythe14week,the095daySZSSMRpython数据挖掘学习笔记】十九.鸢尾花数据集可视化、线性回归、决策树花样分析1.鸢尾花数据集可视化分析2.线性回归分析鸢尾花花瓣长度和宽度的关系3.决策树分析鸢尾花数据集4.Kmeans聚类分析鸢尾花数据集一.鸢尾花数据集介绍本章采用Python的Sklearn机器学习库中自带的数
- 数据挖掘学习笔记02——算法(分类、聚类、回归、关联)
显然易证
数据挖掘数据挖掘算法学习python自然语言处理
数据挖掘——算法前言分类算法KNN算法决策树朴素贝叶斯支持向量机人工神经网络实践1:使用XGB是实现酒店信息消歧聚类算法K-meansDBScan实践2:使用word2vec和k-means聚类回归算法线性回归和逻辑回归实践3:线性回归预测房价关联分析Apriori与FP-Growth前言笔记来源于系统学习以下课程:B站最完整系统的Python数据分析-数据挖掘教程,72小时带你快速入门,轻松转行
- python与数据挖掘上机实验pandas_Python与数据挖掘学习笔记(1)——Pandas模块
weixin_39601657
从图书馆借了一本有关于使用Python进行数据挖掘的书,是机械工业出版社出版的由张良均写的一本书,拿来作为入门,今天在学习使用Pandas模块时耗费了比较久的时间,记录一下今天的心得和体会。书中有一道题目是基于给定的数据集,完成一系列操作:1.判断第一列中(Id)是否有缺失值,如果有的话补充完整;2.判断是否有重复记录,如果有,删除至唯一。3.计算成绩的平均值,作为新的一列加入到原始数据框中。4.
- 数据挖掘学习笔记
codexxs
python机器学习数据挖掘
第一章python基础1.4python基本数据类型#1.41数值类型int,float,bool#1.42字符串strs1='abcd's2='''abcd'''1.4.3列表ListL1=[1,'a1',2,'aa']#[1,'a1',2,'aa']1.4.4元组Tuple处在元组中的元素不能修改T1=(1,'a1')T1=(1,'C1','A1')#(1,'C1','A1')T1[1]=2#
- 数据挖掘学习笔记-第四章 神经网络
weixin_30929011
人工智能
第四章神经网络NetralNetworksBiologicalMotivation例子Perceprons感知积PowerofPerceprons实现一些逻辑上的功能GradientDescent根据误差来调整权重DeltaRuleBatchLearningStochasticLearning感知积可以用来解决线性分类问题,线性分类器。不能解决线性不可分问题比如:NANDMultilayerper
- 数据挖掘学习笔记4-神经网络
irony_202
神经网络数据挖掘深度学习
一、感知机(单层神经网络)采用梯度下降(gradientdescend)方法进行训练,wi=wi-ηΣ(t-o)xi单层神经网络无法处理线性不可分问题(如异或)二、多层感知机(带隐含层神经网络)通过将输入映射到隐含层,将线性不可分问题化简为线性可分问题,再用线性决策平面划分,以此解决线性不可分问题。训练方法为backpropagation(反向传播),输出层的权重w由于误差已知,可简便算出wi=w
- 数据挖掘学习笔记8-推荐算法
irony_202
数据挖掘推荐算法机器学习
一、基于内容的推荐(根据商品内容进行推荐)二、协同推荐(根据用户的好友评价进行推荐)tf-idf:tf——termfrequency词频频率idf——inversedocumentfrequency在其他文档中出现的频率三、向量空间模型将文档转换为向量,两篇文档的相似度就可以用向量的夹角余弦表示(1的时候相似度最大,0的时候相似度最小)难点:同义词、多义词难以识别解决方法:做矩阵分解,类似pca,
- 数据挖掘学习笔记3-贝叶斯与决策树
irony_202
决策树数据挖掘机器学习
一、朴素贝叶斯贝叶斯的基础上增加了一个强假设:在y发生的条件下,各特征发生的概率独立(条件独立)即将联合条件概率转换为各条件概率的连乘积二、决策树特点是容易解读,用属性将样本层层分类,直到样本被完全分离或属性用完。ID3:把大信息增益(为防止将生日、身份证号这类过学习属性,增加分类数量惩罚项)的属性用在树根,递归实现决策树。为防止过学习,决策树还有修剪的过程(从树梢开始,将叶节点数量大的样本值赋给
- python数据挖掘学习笔记——岭回归和lasso回归
仇邇
python数据挖掘学习
python数据挖掘学习笔记岭回归可视化方法确定λ的值交叉验证法确定λ值模型的预测lasso回归可视化处理交叉验证法确定λ模型的预测众所周知,当数据具有较强的多重共线性的时候便无法使用普通的多元线性回归,这在数学上有严谨的证明但本文并不做介绍。有关公式的推导本文均不做说明,如有需要可在论文写作时查阅参考文献。本文仅供个人学习时记录笔记使用Reference:《从零开始学Python数据分析与挖掘》
- python数据挖掘学习笔记——logistic逻辑回归实现
仇邇
python逻辑回归数据挖掘学习
Logistic逻辑回归分析logistic模型的基本介绍python中实现logistic回归模型的评价混淆矩阵ROC曲线,AUC值Logistic模型是经典的用于分类问题的模型,通常用于判断一件事物的好坏或将其分类。本文着重介绍logistic模型的在二分类上的应用,对于数学的推导证明则省略,logistic模型还有很多拓展的使用,如正则化、通过惩罚项调整系数等都值得学习研究,但本文不做赘述只
- 数据挖掘学习笔记之K-means算法
阳光里哭泣的狗
算法聚类数据挖掘机器学习python
目录K-means(K-均值算法)算法背景什么是k-means算法?K-means算法的核心目标?K-means算法工作流程K-means实例K-means总结K-means算法python实现K-means(K-均值算法)算法背景K-means聚类算法由J.B.MacQueen在1967年提出,是最为经典也是使用最为广泛的一种基于划分的聚类算法,属于基于距离的聚类算法。基于距离的聚类算法是指采用
- 数据挖掘学习笔记01——数据挖掘的基本流程
显然易证
数据挖掘数据挖掘学习python
数据挖掘前言数据挖掘01——什么是数据挖掘,能解决什么问题数据挖掘02——Python的数据结构和基本用法数据挖掘03——工欲善其事必先利其器扩展包与Python环境数据挖掘04——数据学习网站数据挖掘05——数据挖掘的具体步骤数据挖掘06——如何处理出完整干净的数据?数据挖掘07——数据建模:该如何选择一个适合我需求的算法?数据挖掘08——数据评估:如何确认我们的模型已经达标?数据挖掘09——数
- Apriori算法python实现(数据挖掘学习笔记)
一个人的牛牛
Python学习python数据挖掘机器学习
目录1.算法伪代码2.算法代码3.测试数据4.结果1.算法伪代码输入:事务数据库D;最小支持度阈值。输出:D中的频繁项集L。方法:L1=find_frequent_1_itemsets(D);//找出频繁1-项集的集合L1for(k=2;Lk-1≠∅;k++){//产生候选,并剪枝Ck=aproiri_gen(Lk-1,min_sup);foreachtransactiont∈D{//扫描D进行候
- Fp-growth算法python实现(数据挖掘学习笔记)
一个人的牛牛
Python学习python算法
目录1.算法伪代码2.算法代码3.测试数据4.结果1.算法伪代码输入:D:事务数据库。min_sup:最小支持度阈值。输出:频繁模式的完全集。方法:1.按照以下步骤构造FP树:(a)扫描事务数据库D一次。收集频繁项的集合F和他们的支持度。对F按照支持度计数降序排序,结果为频繁项集L。(b)创建FP树的根节点,以“null”标记它。对于D中每一个事务trans,执行:选择trans中的频繁项集,并且
- GEO数据挖掘学习笔记一
slim_zhang
全部流程来自:GEO数据库挖掘—生信技能树B站视频,建议去看原文!第一步:找到相关的GEO数据集(文献/搜索),以胃癌gastriccancer为例可去文献中查找,用于练习第二步:运行R包GEOquery获取数据(非常看网速,尽量下载下一点的包)library(GEOquery)eSetsymbolID/entrezID#分两步走:过滤probe_id,得到每个基因所对应的唯一的probe_id得
- 数据挖掘学习笔记之关联规则
阳光里哭泣的狗
算法机器学习数据挖掘大数据
关联规则关联规则的一般表现为蕴含式规则形式:X—>Y其中的X为前提或先导条件,Y为结果或后继关联规则与传统的用于分类的产生式规则有两点不同:1)在某条关联规则中以前提条件出现的属性可以出现在下一条关联规则的结果中2)传统的用于分类的产生式规则的结果中仅能有一个属性,而关联规则中则允许其结果包含一个或多个属性置信度和支持度(1)使用置信度来度量每个关联规则在前提条件下结果发生的可能性置信度:(2)使
- 数据挖掘学习笔记二
cg_Amaz1ng
数据挖掘
数据挖掘学习笔记二数据仓库中的ETLETL作用:是数据仓库获得高质量的数据的环节。解决数据分散问题。解决数据不清洁问题。方便企业各部门构筑数据集市。ETL:六个子过程数据提取(dataextract)数据验证(dataverification)数据清理(datacleaning)数据集成(dataintegration)数据聚集(dataaggregation)数据装载(dataload)**数据
- 数据挖掘学习笔记(三)
翊小宸
数据挖掘
数据分析与数据挖掘的方法1.频繁模式频繁模式:数据中频繁出现的模式。频繁项集:频繁在事务数据集中一起出现的商品集合。例如,信用卡分析、患者就诊分析、购物车分析…2.分类与回归分类与标签预测是找出描述和区分数据类或概念的模型或函数,以便能够使用模型预测类标识未知的对象的类标号。分类预测类别(离散的、无序的)标号,回归建立连续值函数模型,也就是用来预测缺失的或难以获得的数值数据值。典型方法:决策树、朴
- 数据挖掘学习笔记(四)
翊小宸
数据挖掘
第二章数据数据预处理是数据挖掘过程的第一个主要步骤,了解数据才能为分析与挖掘做好预处理。数据的属性:数据值类型数据的分布图形表示形式数据的相似性与相异性数据的属性1.数据对象数据集由数据对象组成。一个数据对象代表一个实体。例如:销售数据库:顾客、商品、销售医疗数据库:患者、医生、诊断治疗大学生数据库:学生、教授、课程数据对象又称为样本、实例、数据点、对象或元组。数据对象用属性描述。数据表的行对应数
- 【数据挖掘学习笔记】5.分类基础
sigmeta
数据挖掘学习笔记
一、特征与分类特征作用数据库通常存放大量的细节数据。然而,用户通常希望以简洁的描述形式观察汇总的数据集提供一类数据的概貌,或将它与对比类相区别方便、灵活地以不同的粒度和从不同的角度描述数据集概念描述方法数据泛化解析特征挖掘类比较数据泛化数据泛化是一个过程,它将大的、任务相关的数据集从较低的概念层抽象到较高的概念层解析特征–通过属性相关性分析,过滤掉统计不相关或弱相关的属性,保留与挖掘任务最相关的属
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag