- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- 袁亚湘院士上《开讲啦》变数学魔术啦!
MatheMagician
人工智能hashtabletabxhtmlj2ee
早点关注我,精彩不迷路!上个月中,我敬仰已久的袁亚湘院士登上了央视《开讲啦》的舞台,给刚开学不久的孩子们献上了精彩的演讲,演讲全程大家可看视频慢慢欣赏:视频1袁亚湘院士《开讲啦》演讲袁老师是知名的最优化理论的专家,在我还在读大三的时候,还曾通过天大数学系黄老师介绍,邮件联系袁老,想找他去读最优化方向的研究生。无奈专业差距太大,在流程上也几乎走不通,不过袁老师还是耐心地给我回了信,并且给了我很多鼓励
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 最优化基础 - (最优化问题分类、凸集)
Big David
数值优化数值优化最优化问题分类凸集Farkas引理
系统学习最优化理论什么是最优化问题?决策问题:(1)决策变量(2)目标函数(一个或多个)(3)一个可由可行策略组成的集合(等式约束或者不等式约束)最优化问题基本形式1最优化问题分类根据可行域S划分:无约束/约束优化根据函数的性质划分:线性规划/非线性规划根据可行域的性质划分:离散优化/连续优化根据函数的向量性质划分:单目标/多目标优化根据规划问题有关信息的确定性划分:随机/模糊/确定性规划2预备知
- 《学校心理学--体验式团体教育模式理论与实践》第一、二章读后感
宋艳云学校心理学
今天,我认真学习了《学校心理学--体验式团体教育模式理论与实践》第一、二章。第一章主要阐述了学校心理学的基本定义、发展历史和现状、研究方法,以及相关学科的区别和联系等;第二章主要介绍和阐述了教育教学最优化理论、国内外教育教学最优化的进程,以及教育教学最优化探索新背景下引发的体验式团体教育模式。虽然我国一直提倡素质教育,提倡减轻学生过重的课业负担,但应试教育还是现代中国所有教育模式中最优的必然选择。
- powell算法简介
重露成涓滴
姓名:彭帅学号:17021210850【嵌牛导读】:Powell是利用函数值来构造共轭搜索方向的一种共轭搜索方法,由于对于n维正定二次函数,共轭搜索方向具有n次收敛的特性,所以powell是直接搜索法中十分有效的一种算法。【嵌牛鼻子】:优化算法【嵌牛提问】:powell算法简介【嵌牛正文】:复杂函数的全局最优化问题是在求解各种复杂工程与科学计算问题中提炼出来的亟待解决的计算问题,最优化理论方法是应
- [足式机器人]Part2 Dr. CAN学习笔记- 最优控制Optimal Control Ch07-2 动态规划 Dynamic Programming
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-最优控制OptimalControlCh07-2动态规划DynamicProgramming1.基本概念2.代码详解3.简单一维案例1.基本概念RichoardBellman最优化理论:Anoptimalpolicyhasthepropertythatwhatevertheinitialstateandinitialdecision
- 最优化理论与方法复习(6)---凸集和凸函数
冒冒菜菜
最优化理论与方法最优化理论与方法凸集凸函数期末复习
文章目录1.凸集1.1定义1.2例题2.凸函数2.1判断方式2.2例题1.凸集1.1定义 设SSS为nnn维欧式空间RnR^nRn一个集合,对于任意的X(1)X^{(1)}X(1),X(2)∈SX^{(2)}∈SX(2)∈S,及每个实数λ∈[0,1]λ∈[0,1]λ∈[0,1],有λX(1)+(1−λ)X(2)∈SλX^{(1)}+(1-λ)X^{(2)}∈SλX(1)+(1−λ)X(2)∈S,则
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 9-11月学习小结
宋艳云学校心理学
河南焦作修武宋艳云近段时间,我认真学习了《学校心理学--体验式团体教育模式理论与实践》前几章。通过学习,我了解到学校心理学的基本定义、发展历史和现状、研究方法,以及相关学科的区别和联系等;教育教学最优化理论、国内外教育教学最优化的进程,以及教育教学最优化探索新背景下引发的体验式团体教育模式。虽然我国一直提倡素质教育,提倡减轻学生过重的课业负担,但应试教育还是现代中国所有教育模式中最优的必然选择。所
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 【自动驾驶中的SLAM技术】第2讲:基础数学知识回顾
兔子不吃草~
自动驾驶中的SLAM技术自动驾驶人工智能机器学习
第二讲:基础数学回顾文章目录第二讲:基础数学回顾1几何学1.1坐标系1.2坐标变换①空间向量②基变换③坐标变换④总结1.3四元数与旋转向量2运动学2.1李群视角2.2四元数视角2.3四元数的李代数与旋转向量间的转换2.4SO(3)+t上的运动学2.5线速度与加速度2.6扰动模型2.7关于左扰动和右扰动的选择2.7.1第一种形式2.7.2第二种形式2.8运动学示例:圆周运动3滤波器与最优化理论3.1
- 最优化理论复习--对偶单纯形方法及灵敏度分析
ˇasushiro
最优化理论矿大往事经验分享人工智能
对偶单纯形方法定义:设x(0)x^{(0)}x(0)是(L)问题的基本解(不一定是可行解(极点)),如果它的对偶问题的解释可行的,则称x(0)x^{(0)}x(0)为原问题的对偶可行基本解从而衍生出结论:当对偶可行的基本解是原问题的可行解时,由于判别数=0>=0>=0了,而是要保证判别数是=0>=0>=0,尽量将判别数化为=0>=0>=0的方法也对称过来了的,步骤变成了先根据最小的右端项B−1bB
- 最优化理论与方法---一维搜索
冒冒菜菜
最优化理论与方法最优化理论与方法一维搜索期末复习
文章目录1.牛顿法2.割线法3.抛物线法1.牛顿法2.割线法 注:抛物线法其实就是牛顿法的近似。因为[xk−xk−1]/[f′(xk)−f′(xk−1)][x^k-x^{k-1}]/[f'(x^k)-f'(x^{k-1})][xk−xk−1]/[f′(xk)−f′(xk−1)]极限就是1/f′′(xk)1/f''(x^k)1/f′′(xk)。3.抛物线法
- [最优化理论] 梯度下降法 + 精确线搜索(单峰区间搜索 + 黄金分割)C++ 代码
hijackedbycsdn
c++最优化理论
这是我的课程作业,用了Eigen库,最后的输出是latex的表格的一部分具体内容就是梯度下降法+精确线搜索(单峰区间搜索+黄金分割)从书本的Matlab代码转译过来的其实,所以应该是一看就懂了这里定义了两个测试函数fun和fun2整个最优化方法包装在SteepestDescent类里面用了模板封装类,这样应该是double和Eigne的Vector都可以支持的用了tuple返回值,用了functi
- 教学是一门慢的艺术
赤木晴子L
好教师也要慢慢来,对待学生、对待生命、对待心灵,需要的是诚心、耐心、恒心。教学效果的落脚点是学而不是教,学生有无进步和发展是衡量教学有没有效果的唯一指标。教学有没有效果,并不是指教师教得好不好或教得认真不认真,而是指学生有没有学到什么或学得好不好,尽管它们之间也有各种关系。苏联教育家巴班斯基提出了教学过程最优化理论。按照巴班斯基的说法,“最优的”这一术语是指“从一定标准来看是最好的”。这里的“标准
- 最优化理论
HI_Forrest
学习笔记c++
最优化理论资料一optimalcondition最优性条件概念二一维搜索逐次下降法iterativedecent单峰函数二分法dichotomoussearch三资料B站最优化理论与算法上交最优化方法一目标函数:需要优化的函数决策变量,可以调整变化的量约束集,决策变量的可行集无约束优化,决策变量任意值约束优化,决策变量范围有限制非线性规划:代价函数或者约束是非线性的。其他规划问题:整数规划inte
- 第一章 最优化理论基础
是璇子鸭
最优化算法矩阵
内容来自马昌凤编著的《最优化方法及其Matlab程序设计》,文章仅为个人的学习笔记,感兴趣的朋友详见原书1最优化问题的数学模型简单来说,最优化问题就是求一个多元函数在某个给定集合上的极值,其一般表达为:minf(x)minf(x)minf(x)s.t.x∈Ks.t.x∈Ks.t.x∈K其中,KKK为可行域,xxx为决策变量,s.t.是subjectto(受限于)的缩写。非线性规划:minf(x)m
- 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
七七喝椰奶
数学建模应当掌握的十类算法算法
介绍当涉及到模拟退火法、神经网络和遗传算法时,它们都是优化和搜索问题的常见算法。下面我将逐个介绍这些算法的基本原理和应用。1.模拟退火法(SimulatedAnnealing):模拟退火法是一种全局优化算法,模拟了金属冶炼中的退火过程。它通过接受更差的解决方案的可能性来避免陷入局部最优解。模拟退火法在搜索空间中随机移动,并逐渐减少移动的范围,以找到全局最优解。主要步骤包括初始化解决方案,定义能量函
- 【兔子王赠书第4期】用ChatGPT轻松玩转机器学习与深度学习
Want595
#《粉丝福利》chatgpt机器学习深度学习
文章目录前言机器学习深度学习ChatGPT推荐图书粉丝福利尾声前言兔子王免费赠书第4期来啦,突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能!机器学习机器学习是人工智能领域的一个重要分支,它的目的是让计算机系统能够自动完成特定任务,而不需要人类专门为其编写指令。机器学习所涉及的技术和算法主要包括统计学、概率论、最优化理论、信息论等。在未来的人工智能时代,机器学习将成为重要的基础技术
- 立体匹配--中值滤波
zfywen
计算机视觉人工智能c++
立体匹配文章目录一.课题说明二.概要设计三.算法设计四.源程序及注释五.运行及调试分析六.课程设计总结一、课题说明立体匹配是立体视觉从图像生成三维点云的常规手段。立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理的能量函数,增加一些约束,采用最优化理论的方法进行方程求解,这也是所有的病态问题求解方法。二、概
- 人工智能数学知识
你美依旧
1线性代数向量向量空间;矩阵线性变换特征值特征向量;奇异值奇异值分解1线性代数是人工智能的数学基础之一2线性代数的核心意义在于将具体事物抽象为数学对象3线性代数描述着食物的静态(向量)和(动态变换)的特征2概率论与统计随机事件;条件概率全概率贝叶斯概率统计量常见分布;基本原理3最优化理论极限导数;线性逼近泰勒展开凸函数Jensen不等式;最小二乘法;梯度梯度下降1先初始化一下权重参数2然后利用优化
- 【电子书资源】数值方法&最优化理论&算法&凸优化 ---书籍调研(附网盘下载地址)...
十年一梦实验室
算法python人工智能机器学习大数据
随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。数值计算方法,是一种研
- 数学建模:最优化问题及其求解概述
AGI_Player
数学建模数学建模
数学建模:最优化问题及其求解概述最优化问题定义分类离散优化问题连续优化问题求解此博客围绕运筹学以及最优化理论的相关知识,通俗易懂地介绍了最优化问题的定义、分类以及求解算法。最优化问题定义数学优化(MathematicalOptimization)问题,也叫最优化问题,属于运筹学研究的主要内容,它是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。这种问题在生活中很常见,例如如何利用有限
- 【最优化理论】人工智能与最优化理论的联系
果壳中的robot
人工智能机器学习算法
1.最优化理论的主要分支最优化理论的主要分支有两类,包括针对一般问题的数学规划模型以及针对特定问题的数学规划模型,其各自涵盖的范围如下:一般问题的数学规划模型:线性规划整数规划非线性规划动态规划网络流优化…特定问题的数学模型:网络计划排队论存储论决策论对策论…2.优化方法简述例如优化问题为maxf(x)\maxf(x)maxf(x),其函数图像如下:优化的基本方法是:从a,b之间的任一点出发,朝
- 【最优化理论】线性规划标准模型的基本概念与性质
果壳中的robot
算法机器学习动态规划数学建模性能优化
我们在中学阶段就遇到过线性规划问题,主要是二维的情况,而求解的方法一般是非常直观、高效的图解法。根据过往的经验,线性规划问题的最优目标值一般在可行域的顶点处取得,那么本文就对这个问题进行更深入的探讨,维度也从二维推广至高维,内容主要包括以下问题:线性规划问题的可行域有哪些性质?线性规划问题的可行域顶点有哪些特点?为什么可行域的顶点有最优解?顶点的数学描述?高维模型有哪些性质?1.线性规划模型的一些
- 机器人中的数值优化|【二】最速下降法,可行牛顿法的python实现,以Rosenbrock function为例
影子鱼Alexios
algorithmpythonpython机器人人工智能数学
机器人中的数值优化|【二】最优化方法:最速下降法,可行牛顿法的python实现,以Rosenbrockfunction为例在上一节中提到了我们详细探讨了数值优化/最优化理论中的基本概念和性质,现在开始使用python对算法进行实现。上一节链接:机器人中的数值优化|【一】数值优化基础导入依赖导入依赖库并定义常量,C_CONSTANT为步长超参数,取0~1之间,停机准则STOP_CONSTANT,意为
- 神经网络基础原理(二)----分类问题(含Tensorflow 2.X代码)
天蒙光
深度学习神经网络tensorflow机器学习深度学习
举线性回归的例子只是为了从最简单的角度来介绍神经网络的执行流程。神经网络在拟合线性函数方面的确存在得天独厚的优势。事实上,如果你对最优化理论熟悉,会发现神经网络的底层原理与最优化理论是一致的(目的都是求某一目标函数的极值)。神经网络擅长的并不仅限于拟合线性函数。分类问题是神经网络最经典的应用之一。所谓的分类问题,是指给定m个学习样本,如何根据先验知识,将这m个样本分成k类。解决分类问题第一步:数据
- Compositional Minimax Optimization学习之路
他不是混子QAQ
学习
梯度最优化理论最优化基础---基本概念:凸优化、梯度、Jacobi矩阵、Hessian矩阵_哔哩哔哩_bilibili从图像来看:存在两点连线上的点不在集合内定义ax1+(1-a)x2其实就是两点连线上的点可用与函数围成的面积和与坐标轴围成的面积角度理解凸函数凸优化在定义域和F(X)都是凸集的问题(凸凸问题),就是凸优化jacobi广义导数n维映射到m维梯度的雅可比矩阵就是海森矩阵动量法(Mome
- 机器学习笔记之最优化理论与算法(十二)无约束优化问题——共轭梯度法
静静的喝酒
最优化理论与方法机器学习深度学习共轭梯度法非线性共轭梯度法FR方法PRP方法n步重启策略
机器学习笔记之最优化理论与方法——共轭梯度法引言回顾:共轭方向法的重要特征线性共轭梯度法共轭方向公式的证明过程关于线搜索公式中参数的化简关于线搜索公式中步长部分的化简关于线搜索公式中共轭方向系数的化简参数化简的目的非线性共轭梯度法(FR,PRP方法)关于非线性共轭梯度法的说明引言上一节主要介绍了共轭方向法的重要特征以及相关证明,本节将介绍共轭方向法的代表算法——共轭梯度法。回顾:共轭方向法的重要特
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发