- 关于非线性优化小记
文弱_书生
乱七八糟算法
非线性优化(NonlinearOptimization)1.什么是非线性优化?非线性优化是指目标函数或约束条件中至少有一个是非线性的优化问题。它广泛应用于工程、经济、人工智能、机器学习等领域,用于求解最优解的问题。非线性优化通常可以表示为以下数学形式:minxf(x)或maxxf(x)\min_{x}f(x)\quad\text{或}\quad\max_{x}f(x)xminf(x)或xmax
- 视觉SLAM十四讲 第7讲 (3) 相机运动估计 2D-2D/3D-2D/3D-3D
LYF0816LYF
slamlearning3d计算机视觉算法slam
相机运动估计2D-2D/3D-2D/3D-3D1.2D-2D:对极约束2.三角测量3.3D-2D:PnP3.1直接线性变换DLT3.2P3P3.3最小化投影误差求解PnP4.3D-3D:ICP4.1SVD方法4.2非线性优化方法5.总结若已经有匹配好的点对,要根据点对估计相机的运动,可以分为以下三种情况:2D-2D:即点对都是2D点,比如单目相机匹配到的点对。我们可以用对极几何来估计相机的运动。在
- GTSAM 库详细介绍与使用指南
点云SLAM
点云数据优化工具GTSAMSLAM后端优化最小二乘法计算机视觉贝叶斯
GTSAM库详细介绍与使用指南一、GTSAM概述GTSAM(GeorgiaTechSmoothingandMapping)是由佐治亚理工学院开发的C++开源库,专注于概率图模型(尤其是因子图)的构建与优化,广泛应用于机器人定位与建图(SLAM)、传感器融合、运动规划等领域。其核心优势在于:高效的因子图优化:支持贝叶斯网络建模与非线性优化。增量式求解器(iSAM/iSAM2):适用于实时SLAM问题
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- g2o优化器系列1
Optimization
参考资料:[1]深入理解图优化与g2o:g2o篇[2]SLAM14讲6.4曲线拟合程序[3]SLAM14讲7.8.2PNP中使用g2o[4]SLAM14讲7.9.2ICP中非线性优化[5]SLAM14讲8.5.2定义直接法的边[6]SLAM14讲9.3改进PNP的结果[7]SLAM14讲10.3.2g2o求解BA[8]SLAM14讲11.2.1g2o原生位姿图[9]SLAM14讲11.2.2李代数
- Levmar使用小结(一)
hhh0209
非线性优化levmal
Levmar是非线性优化的一个库,使用起来很方便。但是刚开始接触时会有点头疼,尤其是如果不懂LM算法,直接使用的话,就会满脑子“这是啥?这都是啥?”最近在学习非线性优化的方法,总结一下希望可以帮助到大家。Levmar的安装配置大家可以看这篇文章:http://blog.sina.com.cn/s/blog_45b747f70101he1t.htmlLevmar的官网是这个:http://users
- BP神经网络需要像深度学习一次次的迭代训练吗?
小桥流水---人工智能
机器学习算法Python程序代码深度学习神经网络人工智能
BP神经网络答案:是的,BP神经网络需要像深度学习一次次的迭代训练。总结(BP神经网络和深度学习在本质上有以下区别)答案:是的,BP神经网络需要像深度学习一次次的迭代训练。BP神经网络(误差反传网络)实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法。其训练过程包括正向传播和反向传播两个阶段。在正向传播阶段,输入数据通过神经网络的
- [algorithm] 自动驾驶 规划 && 非线性优化学习系列之1 :车辆横向运动&&动力学详细解释
HERR_QQ
AutonomousDrivingAlgorithm自动驾驶学习
写在前面最近时空联合规划很火,想学习。由于在学校主打学习新能源电力电子方向,转行后也想好好零散的知识体系。计划从车辆运动动力学习,模型预测控制(经典控制目前看主打应用,不会再去深入),非线性优化开始梳理,到最后复现时空联合规划的论文。知识梳理会进行的比较快,实际复现和代码编写会慢慢来完成。当中如果遇到和实际问题有关的细节知识,作为自己的未来解决方案储备也会强调一下。目前计划借助的资料有(每本书阅读
- CasADi学习(1)
Tomcattiger
MPC非线性优化python
文章目录CasADi一些补充说明版权问题环境配置代码不同版本问题运行速度预留链接CasADi正如官网介绍,CasADi提供了一种高效的开源优化问题解决方案,非常适用于解决非线性优化问题(nonlinearoptimization)和实现自动微分(algorithmicdifferentiation)。相较于其他的优化库,例如ACADO和GRAMPC,在提供了标准的C/C++和MATLAB支持外,其
- SQP算法论文阅读1:NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems
小林up
科研算法SQP论文
SchittkowskiK.NLPQL:AFORTRANsubroutinesolvingconstrainednonlinearprogrammingproblems[J].Annalsofoperationsresearch,1986,5:485-500.SQP序列二次规划的思想是将约束非线性优化问题等效为求解一系列二次规划子问题求解,对于约束问题,一般的描述是:这个问题必须是光滑的:定义拉格
- 优化|流形优化系列(一)
运筹OR帷幄
人工智能算法
简介流形优化是非线性优化的一个分支,它主要关注在特定的几何结构下进行优化。在流形优化中,优化问题通常是在黎曼流形上进行的,而非欧几里得空间。黎曼流形是带有黎曼度量的流形,该度量为流形上的每个点都定义了一个内积。这种内积结构提供了流形上测量长度和角度的方式,这在优化过程中非常重要,因为它允许我们定义梯度和Hessian等概念,并进行相应的优化操作。在流形优化的背景下,流形通常是解的约束集。例如,当解
- SLAM中用到的GTSAM是什么,如何构建和使用GTSAM
稻壳特筑
SLAMSLAM因子图
目录几个关键原理:1.因子图:2.非线性优化:3.平滑和映射:4.概率建模:5.模块化和扩展性:举例说明如何构建和使用GTSAM:步骤1:安装GTSAM步骤2:包含头文件步骤3:创建因子图步骤4:添加因子步骤5:创建初始估计步骤6:优化步骤7:结果分析GTSAM(GeorgiaTechSmoothingandMappinglibrary)是一个开源C++库,用于解决机器人和自动驾驶车辆的定位与地图
- 多维无约束非线性优化
Kilig*
机器学习人工智能算法
问题描述对于一个极小化问题minf(X)min\quadf(X)minf(X),其中XXX是多维变量X=x1…xnX={x_{1}\dotsx_{n}}X=x1…xn牛顿法牛顿法原理牛顿法的思想是将函数进行二阶展开。对于一个一维函数来说函数在x0x_0x0附近的二阶泰勒展开可以近似为f(x)≈f(x0)+f′(x0)(x−x0)+12f′′(x0)(x−x0)2f(x)\approxf(x_0)+
- Ceres库与位姿图优化
独孤西
SLAMc++计算机视觉人工智能
文章目录前言Ceres库理论与实践位姿图优化SLAM中的优化问题小结前言SLAM中后端优化求解上ceres库位姿图优化有非常多的应用,这里记录一下自己的学习内容,主要参考B站的视频和CSDN的博客,推荐以下资料:【非线性优化器ceres的使用20221125】https://www.bilibili.com/video/BV1p24y1y7BL/?share_source=copy_web&vd_
- Ceres使用
读书健身敲代码
SLAM
之前用过Ceres,但是只是跑例程,现在来着重学习一下使用流程。1.解决的问题主要解决非线性优化问题。Ceres是一个较为通用的库。参考链接2.如何使用这个是求解的函数,主要关注这三个参数CERES_EXPORTvoidSolve(constSolver::Options&options,Problem*problem,Solver::Summary*summary);1.options与优化相关
- 视觉SLAM十四讲学习笔记——第六讲 非线性优化(2)
晒月光12138
视觉SLAM十四讲学习笔记机器学习slam
这一节主要回顾一下Ceres、g20的使用。1.Ceres、G2o源码安装方法高博士的书中都有各个库的安装方法,但由于版本变化,个别安装方法可能并不适用。这里简单整理一下两个库的源码安装方法,其他的库之后有时间统一整理一下。(1)Ceres安装下载源码,下载地址:https://github.com/ceres-solver/ceres-solver安装依赖项:sudoapt-getinstall
- 2022-03-22
内推君
自动驾驶/机器人SLAM算法面经1欢迎关注公众号:内推君SIR,加微信:neituijunsir加入自动驾驶交流群Case1一面项目相关1、简历中的项目相关问题,项目是三维重建相关的,深度学习的深度估计2、具体细节上,网络结构、loss设计、数据、训练泛化效果3、非公共区域如何处理、精度如何保证基础:1、非线性优化2、视觉slam基础场景题:1、只有相机的情况下,采用深度学习的方案,如何实现高精度
- 视觉SLAM十四讲学习笔记——第九讲 后端优化(1)
晒月光12138
视觉SLAM十四讲学习笔记slam计算机视觉
经过前端(视觉里程计)估计得到的轨迹和地图由于存在累计误差,在长时间内是不准确的。因此希望构建一个针对全局的更大规模的优化问题,得到最优的轨迹和地图,这里主要有两种解决思路:(1)基于马尔可夫性假设的卡尔曼滤波器:马氏性假设可以简单地理解为“当前时刻状态只与上一时刻有关”。针对SLAM问题(非线性)的卡尔曼滤波器给出了单次线性近似下的最大后验估计,或者说是优化过程中一次迭代的结果。(2)非线性优化
- 自学SLAM(8)《第四讲:相机模型与非线性优化》作业
Chris·Bosh
视觉SLAM数码相机opencvC++视觉SLAM
前言小编研究生的研究方向是视觉SLAM,目前在自学,本篇文章为初学高翔老师课的第四次作业。文章目录前言1.图像去畸变2.双目视差的使用3.矩阵微分4.高斯牛顿法的曲线拟合实验1.图像去畸变现实⽣活中的图像总存在畸变。原则上来说,针孔透视相机应该将三维世界中的直线投影成直线,但是当我们使⽤⼴⾓和鱼眼镜头时,由于畸变的原因,直线在图像⾥看起来是扭曲的。本次作业,你将尝试如何对⼀张图像去畸变,得到畸变前
- Matlab toolbox Manopt流形优化工具包介绍
hi_linda
MATLABmanoptmatlab工具包黎曼优化几何学矩阵
一、Manopt工具包介绍:主页https://www.manopt.org/index.html工具箱下载地址:https://www.manopt.org/downloads.html详细教程:https://www.manopt.org/tutorial.html工具箱作用:主页介绍:Manopt工具箱用于流形与矩阵优化;流形上的优化问题是解决非线性优化问题的一种有效方法。利用Manopt,
- 自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库)
Chris·Bosh
视觉SLAMC++视觉SLAM计算机视觉
前言本次文章针对的是第四个视屏中的实践问题肯定会有部分方法没有说到,比如高斯牛顿法,后面我会把此次视屏对应的作业写好,然后补充到此次博客!!文章目录前言1.曲线拟合题目:2.非线性最小二乘2.1黄金分割法(0.618法)2.2最速下降法3.ceres库实现曲线拟合题目3.1安装ceres3.2代码及运行4.g2o库实现曲线拟合题目4.1安装g2o4.2代码及运行1.曲线拟合题目:设有曲线满⾜以下⽅
- vslam论文4:Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
xsyaoxuexi
视觉SLAM论文阅读论文阅读人工智能自动驾驶c++目标检测
出版:TRO2022摘要大多数现有的基于视觉的SLAM系统及其变体仍然假设观测是绝对静态的,无法在动态环境中表现良好。在这里,我们介绍了Dynam-SLAM(Dynam),这是一种双目视觉惯性SLAM系统,能够在高动态环境中实现稳健、准确和连续的工作。我们的方法致力于将双目场景流与惯性测量单元(IMU)松耦合,用于动态特征检测,并将动态特征和静态特征与IMU测量紧耦合以进行非线性优化。首先,对测量
- 【VSLAM系列】三:Vins-Mono论文笔记
塞拉摩
视觉SLAM论文阅读数码相机人工智能
VINs-Mono论文1.VINS-Mono的特点:1.未知初始状态的鲁棒性初始化过程2.带imu-camera外参校准和imu校准的紧耦合,基于非线性优化的单目VIO系统3.在线重定位和四个自由度的全局姿态图优化。4.姿态图可以保存,加载,并和局部姿态图进行合并。2.传感器数据处理摄像头和imu数据融合方法:1.松耦合法,imu是独立于摄像头的模块,常使用EKF算法,imu数据此时用于状态传播,
- 【视觉SLAM十四讲】【逐行代码带你解析】【适合纯小白 ps:因为我就是】(持续更新中)
R_ichun
slam从入门到放弃笔记人工智能机器学习计算机视觉自动驾驶图像处理机器人
视觉SLAM十四讲学习笔记【逐行代码带你解析】【适合纯小白ps:因为我就是】(持续更新中)前言ch2初识SLAM2.1.什么是SLAM2.2经典视觉SLAM框架2.2.1.传感器信息读取2.2.2.前端视觉里程计2.2.3.后端非线性优化2.2.4.回环检测2.2.5.建图2.3.SLAM问题的数学表述2.4.ch2的实践ch3三维空间刚体运动3.1.旋转矩阵3.1.1.点、向量和坐标系3.1.2
- LM(列文伯格-马夸尔特)方法的个人理解,以及实现问题
慷仔
优化算法机器学习算法
前言LM方法是适用于求解方程最小值的一种方法,在非线性优化的框架中,优化方法分为LineSearch和TrustRegion,也就是线搜索和信任域方法,它们是两种不同性质的方法。不同之处:LIneSearch:不管当前迭代点X(k)到最优解X*之间的路径,每次迭代X(k)得到X(k+1),都是使用该点的反向梯度方向进行值得寻找,这就导致了这样一种可能得问题:‘在靠近X*的时候,X(k)反复震荡,不
- 计算机视觉与深度学习 | 非线性优化理论:图优化、高斯牛顿法和列文伯格-马夸尔特算法
卡尔曼的BD SLAMer
计算机视觉图优化非线性优化理论高斯牛顿法列文伯格-马夸尔特算法
=====================================================github:https://github.com/MichaelBeechanCSDN:https://blog.csdn.net/u011344545=====================================================计算机视觉与深度学习|SLAM国内
- matlab 非线性方程数值解法,非线性方程组的几种数值解法+matlab源代码
weixin_39969028
matlab非线性方程数值解法
摘要很多领域都有涉及到非线性方程组,例如天气预报,石油地质勘探,电力系统计算等,甚至商业领域也有非线性优化问题,这些问题要从本质上解决就是求出非线性方程组的解.但是目前已知的数值解法并不完善,选择不同的方法,有着不同的收敛速度和计算量,而收敛速度和计算量影响着计算效率,所以数值解法的研究十分重要.58513本篇论文首先简单介绍了非线性方程组的几种经典数值解法,如Newton法、区间迭代法、不动点迭
- VINS-mono学习总结
小吕爱学习、
学习
Vins-mono是一个后端基于非线性优化的、单目与IMU紧耦合的融合定位算法。整体:1预处理模块视觉:特征点提取与追踪IMU:惯性解算与误差状态分析、计算预积分量2初始化模块(旋转外参标定、基于图像的三维重建-纯视觉单目slam问题、陀螺仪零偏估计、视觉惯性对齐、利用重力的先验知识修正重力)3基于滑动窗口的非线性优化模块(预积分约束、视觉重投影约束、边缘化约束4回环检测模块(检测回环、校验回环、
- 《视觉 SLAM 十四讲》V2 第 9 讲 后端优化1 【扩展卡尔曼滤波器 EKF && BA+非线性优化(Ceres、g2o)】
Gaogaogaoshu
机器人SLAM
文章目录第9讲后端19.1.2线性系统和KF9.1.4扩展卡尔曼滤波器EKF不足9.2BA与图优化9.2.1投影模型和BA代价函数9.2.2BA的求解9.2.3稀疏性和边缘化9.2.4鲁棒核函数9.3实践:CeresBA【Code】本讲CMakeLists.txt9.4实践:g2o求解BA【Code】习题第9讲后端1滤波器EKF前端视觉里程计:短时间内的轨迹和地图。后端优化:长时间内的最优轨迹和地
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多