数学分析笔记15:多元函数微分学的应用

微分与偏导的几何应用

空间曲面的切平面与法向量

首先何谓空间曲面,空间曲面有两种表现形式,一种以显函数形式表示
y = f ( x , y ) y=f(x,y) y=f(x,y)一种则以参数方程的形式表示
{ x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) \begin{cases} x=x(u,v)\\ y=y(u,v)\\ z=z(u,v) \end{cases} x=x(u,v)y=y(u,v)z=z(u,v)如果以显函数形式表示,空间曲面在某点的切平面就表示为其全微分的超平面
z = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) z=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0) z=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)问题是:如果以参数方程的形式表示,切平面该如何求得呢?我们当然是要化成显函数的形式了,但是显函数不总是那么容易求得,这时,我们想到隐函数存在定理。假设 ∂ ( x , y ) ∂ ( u , v ) ≠ 0 \frac{\partial(x,y)}{\partial(u,v)}\neq 0 (u,v)(x,y)=0,由隐函数存在定理2,在局部 x 0 = x ( u 0 , v 0 ) , y 0 = y ( u 0 , v 0 ) x_0=x(u_0,v_0),y_0=y(u_0,v_0) x0=x(u0,v0),y0=y(u0,v0)就存在一个连续可微的隐函数组
{ u = u ( x , y ) v = v ( x , y ) \begin{cases} u=u(x,y)\\ v=v(x,y) \end{cases} {u=u(x,y)v=v(x,y)代入第三个方程中,就得到显函数
z = z ( u ( x , y ) , v ( x , y ) ) z=z(u(x,y),v(x,y)) z=z(u(x,y),v(x,y))于是
{ ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \begin{cases} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\\ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial y} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} \end{cases} {xz=uzxu+vzxvyz=uzyu+vzyv只需要我们求出 ∂ u ∂ x , ∂ u ∂ y , ∂ v ∂ x , ∂ v ∂ y \frac{\partial u}{\partial x},\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x},\frac{\partial v}{\partial y} xu,yu,xv,yv
自然地,我们联想到Cramer法则: { ∂ u ∂ x = ∂ y ∂ v ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u ∂ v ∂ x = − ∂ y ∂ u ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u ∂ u ∂ y = − ∂ x ∂ v ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u ∂ v ∂ y = ∂ x ∂ u ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u \begin{cases} \frac{\partial u}{\partial x} = \frac{\frac{\partial y}{\partial v}}{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} }\\ \frac{\partial v}{\partial x} = \frac{-\frac{\partial y}{\partial u}}{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} }\\ \frac{\partial u}{\partial y}=\frac{-\frac{\partial x}{\partial v}}{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} }\\ \frac{\partial v}{\partial y}=\frac{ \frac{\partial x}{\partial u} }{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} } \end{cases} xu=uxvyvxuyvyxv=uxvyvxuyuyyu=uxvyvxuyvxyv=uxvyvxuyux这样,我们就求得了所有偏导数,就可以得到切平面的方程,切平面的法向量就是 ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) (-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y},1) (xz,yz,1)如果是参数方程形式 ∂ z ∂ x = det ⁡ [ ∂ z ∂ u ∂ z ∂ v ∂ y ∂ u ∂ y ∂ v ] det ⁡ [ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ] \frac{\partial z}{\partial x} =\frac{ \det\left[ \begin{matrix} \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] }{ \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] } xz=det[uxuyvxvy]det[uzuyvzvy] ∂ z ∂ y = det ⁡ [ ∂ z ∂ u ∂ z ∂ v ∂ x ∂ u ∂ x ∂ v ] det ⁡ [ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ] \frac{\partial z}{\partial y} =\frac{ \det\left[ \begin{matrix} \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}\\ \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v} \end{matrix} \right] }{ \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] } yz=det[uxuyvxvy]det[uzuxvzvx]
因此,参数方程形式下,法向量为:
( det ⁡ [ ∂ y ∂ u ∂ y ∂ v ∂ z ∂ u ∂ z ∂ v ] , det ⁡ [ ∂ x ∂ u ∂ x ∂ v ∂ z ∂ u ∂ z ∂ v ] , det ⁡ [ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ] ) (\det\left[ \begin{matrix} \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\\ \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v} \end{matrix} \right], \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v} \end{matrix} \right], \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] ) (det[uyuzvyvz],det[uxuzvxvz],det[uxuyvxvy])于是,参数方程形式下,只要以上三个行列式之一不为0,切平面就可以表为 ∂ ( y , z ) ∂ ( u , v ) ( x − x 0 ) + ∂ ( x , z ) ∂ ( u , v ) ( y − y 0 ) + ∂ ( x , y ) ∂ ( u , v ) ( y − y 0 ) = 0 \frac{\partial(y,z)}{\partial(u,v)}(x-x_0)+\frac{\partial(x,z)}{\partial(u,v)}(y-y_0) +\frac{\partial(x,y)}{\partial(u,v)}(y-y_0)=0 (u,v)(y,z)(xx0)+(u,v)(x,z)(yy0)+(u,v)(x,y)(yy0)=0

空间曲线的切线与法平面

空间曲线则为以下的参数方程形式
{ x = x ( t ) y = y ( t ) z = z ( t ) \begin{cases} x=x(t)\\ y=y(t)\\ z=z(t) \end{cases} x=x(t)y=y(t)z=z(t)其中 t ∈ [ α , β ] t\in[\alpha,\beta] t[α,β],切线的方向向量该如何求解呢? t ∈ [ α , β ] t\in[\alpha,\beta] t[α,β] t + Δ t ∈ [ α , β ] t+\Delta t\in[\alpha,\beta] t+Δt[α,β],假设 x ( t ) , y ( t ) , z ( t ) x(t),y(t),z(t) x(t),y(t),z(t)都可微,那么:方向向量就可以通过逼近的方式得到
1 Δ t [ ( x ( t + Δ t ) , y ( t + Δ t ) , z ( t + Δ t ) ) − ( x ( t ) , y ( t ) , z ( t ) ) ] → ( x ′ ( t ) , y ′ ( t ) , z ′ ( t ) ) \frac{1}{\Delta t}[(x(t+\Delta t),y(t+\Delta t),z(t+\Delta t))-(x(t),y(t),z(t))] \to (x^\prime(t),y^\prime(t),z^\prime(t)) Δt1[(x(t+Δt),y(t+Δt),z(t+Δt))(x(t),y(t),z(t))](x(t),y(t),z(t))与之正交的一切向量组成其法平面:
x ′ ( t ) ( x − x ( t ) ) + y ′ ( t ) ( y − y ( t ) ) + z ′ ( z − z ( t ) ) = 0 x^\prime(t)(x-x(t))+y^\prime(t)(y-y(t))+z^\prime(z-z(t))=0 x(t)(xx(t))+y(t)(yy(t))+z(zz(t))=0当然,空间曲线可以由两个空间曲面相交得到
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0在这种情况下,如何求得方向向量和法平面呢?我们不妨先讨论如下的情形:
{ z = F ( x , y ) z = G ( x , y ) \begin{cases} z=F(x,y)\\ z=G(x,y) \end{cases} {z=F(x,y)z=G(x,y)相交得到的空间曲线应当如何求解法平面,假设 ∂ ( F , G ) ∂ ( x , y ) ≠ 0 \frac{\partial(F,G)}{\partial(x,y)}\neq 0 (x,y)(F,G)=0,那么,由隐函数存在定理,就可以反解出
{ x = x ( z ) y = y ( z ) \begin{cases} x=x(z)\\ y=y(z) \end{cases} {x=x(z)y=y(z)再补充
z = z z=z z=z就成了参数方程形式
{ x = x ( z ) y = y ( z ) z = z \begin{cases} x=x(z)\\ y=y(z)\\ z=z \end{cases} x=x(z)y=y(z)z=z同样地,对于更一般的形式,不妨假设 ∂ ( F , G ) ∂ ( x , y ) , ∂ ( F , G ) ∂ ( x , z ) , ∂ ( F , G ) ∂ ( y , z ) \frac{\partial(F,G)}{\partial(x,y)}, \frac{\partial(F,G)}{\partial(x,z)}, \frac{\partial(F,G)}{\partial(y,z)} (x,y)(F,G),(x,z)(F,G),(y,z)(F,G)不全为0,假设 ∂ ( F , G ) ∂ ( x , y ) ≠ 0 \frac{\partial(F,G)}{\partial(x,y)}\neq 0 (x,y)(F,G)=0,由隐函数存在定理,可以反解出
{ x = x ( z ) y = y ( z ) \begin{cases} x=x(z)\\ y=y(z) \end{cases} {x=x(z)y=y(z)再补充
z = z z=z z=z就成了参数方程形式
{ x = x ( z ) y = y ( z ) z = z \begin{cases} x=x(z)\\ y=y(z)\\ z=z \end{cases} x=x(z)y=y(z)z=z下面我们对一般形式进行讨论:
x ′ ( z ) = ∂ ( F , G ) ∂ ( y , z ) ∂ ( F , G ) ∂ ( x , y ) x^\prime(z) = \frac{ \frac{\partial(F,G)}{\partial(y,z)} }{ \frac{\partial(F,G)}{\partial(x,y)} } x(z)=(x,y)(F,G)(y,z)(F,G) y ′ ( z ) = ∂ ( F , G ) ∂ ( x , z ) ∂ ( F , G ) ∂ ( x , y ) y^\prime(z) = \frac{ \frac{\partial(F,G)}{\partial(x,z)} }{ \frac{\partial(F,G)}{\partial(x,y)} } y(z)=(x,y)(F,G)(x,z)(F,G)因此,法平面方程就是:
∂ ( F , G ) ∂ ( y , z ) ( x − x 0 ) + ∂ ( F , G ) ∂ ( x , z ) ( y − y 0 ) + ∂ ( F , G ) ∂ ( x , y ) ( z − z 0 ) = 0 \frac{\partial(F,G)}{\partial(y,z)}(x-x_0)+ \frac{\partial(F,G)}{\partial(x,z)}(y-y_0)+ \frac{\partial(F,G)}{\partial(x,y)}(z-z_0)=0 (y,z)(F,G)(xx0)+(x,z)(F,G)(yy0)+(x,y)(F,G)(zz0)=0

极值与条件极值

多元函数的极值

现在我们来讨论多元函数的极值问题,首先,同一元函数一样,如果多元函数 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处取极值点,并且在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)连续可微,那么首先在该点对各变元的偏导数为0,即
f ′ ( x 1 0 , ⋯   , x n 0 ) = 0 f^\prime(x_1^0,\cdots,x_n^0)=0 f(x10,,xn0)=0满足这个条件的点就称为驻点,然而驻点不一定都是极值点。同样地,对极值点的判定,我们可以借助“二阶导数”,也就是海色矩阵进行。

定理15.1 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)的某个邻域上二阶连续可微, f ′ ( x 1 0 , ⋯   , x n 0 ) = 0 f^\prime(x_1^0,\cdots,x_n^0)=0 f(x10,,xn0)=0 H f ( x 0 ) H_f(x_0) Hf(x0) f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处的海色矩阵,则
(1) H f ( x 0 ) H_f(x_0) Hf(x0)正定,则 f f f ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处取严格极小值
(2) H f ( x 0 ) H_f(x_0) Hf(x0)负定,则 f f f ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处取严格极大值
(3) H f ( x 0 ) H_f(x_0) Hf(x0)不定,则 f f f ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处不取极值

证:
(1)(2)我们仅证明(1),(2)的证明是类似的
由Taylor公式 f ( x ) = f ( x 0 ) + 1 2 ( x − x 0 ) T H f ( x 0 ) ( x − x 0 ) + o ( ( x − x 0 ) T ( x − x 0 ) ) f(x)=f(x_0)+\frac{1}{2}(x-x_0)^TH_f(x_0)(x-x_0) +o((x-x_0)^T(x-x_0)) f(x)=f(x0)+21(xx0)THf(x0)(xx0)+o((xx0)T(xx0))由于 H f ( x 0 ) H_f(x_0) Hf(x0)正定,存在正定矩阵 Q Q Q,使得 Q H f ( x 0 ) Q T = D = d i a g ( λ 1 , ⋯   , λ n ) QH_f(x_0)Q^T=D=diag(\lambda_1,\cdots,\lambda_n) QHf(x0)QT=D=diag(λ1,,λn)其中, λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn都是正数,是 H f ( x 0 ) H_f(x_0) Hf(x0)的特征值。对 x − x 0 x-x_0 xx0作变换 Δ y = Q ( x − x 0 ) \Delta y=Q(x-x_0) Δy=Q(xx0),就有
f ( x ) − f ( x 0 ) = 1 2 Δ y T D Δ y + o ( Δ y T Δ y ) f(x)-f(x_0)=\frac{1}{2}\Delta y^T D \Delta y + o(\Delta y^T\Delta y) f(x)f(x0)=21ΔyTDΔy+o(ΔyTΔy)于是 f ( x ) − f ( x 0 ) Δ x T Δ x = 1 2 Δ y T D Δ y Δ y T Δ y + o ( Δ y T Δ y ) Δ y T Δ y \frac{f(x)-f(x_0)}{\Delta x^T\Delta x} =\frac{1}{2}\frac{\Delta y^T D \Delta y}{ \Delta y^T\Delta y }+ \frac{ o(\Delta y^T\Delta y) }{ \Delta y^T\Delta y } ΔxTΔxf(x)f(x0)=21ΔyTΔyΔyTDΔy+ΔyTΔyo(ΔyTΔy)
Δ y T D Δ y Δ y T Δ y = ∑ k = 1 n λ k Δ y k 2 ∑ k = 1 n Δ y k 2 ≥ min ⁡ ( λ 1 , ⋯   , λ n ) > 0 (1) \tag{1} \frac{ \Delta y^T D \Delta y }{\Delta y^T\Delta y} =\frac{ \sum_{k=1}^n{\lambda_k\Delta y_k^2} }{ \sum_{k=1}^n{\Delta y_k^2} }\ge\min(\lambda_1,\cdots,\lambda_n)>0 ΔyTΔyΔyTDΔy=k=1nΔyk2k=1nλkΔyk2min(λ1,,λn)>0(1)存在 δ > 0 \delta >0 δ>0,当 Δ x T Δ x < δ \Delta x^T\Delta x<\sqrt{\delta} ΔxTΔx<δ
∣ o ( Δ y T Δ y ) Δ y T Δ y ∣ < min ⁡ ( λ 1 , ⋯   , λ n ) 2 |\frac{ o(\Delta y^T\Delta y) }{ \Delta y^T\Delta y }|<\frac{\min(\lambda_1,\cdots,\lambda_n)}{2} ΔyTΔyo(ΔyTΔy)<2min(λ1,,λn)这样
f ( x ) − f ( x 0 ) Δ x T Δ x > 0 \frac{f(x)-f(x_0)}{\Delta x^T\Delta x} >0 ΔxTΔxf(x)f(x0)>0从而 f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0)这样 f ( x ) f(x) f(x) x 0 x_0 x0处取得严格极小值
反过来,按照公式(1),如果 H f ( x 0 ) H_f(x_0) Hf(x0)不定,那么存在一正一负两个特征值,用相同的方法就可以证明 f ( x ) f(x) f(x) x 0 x_0 x0处不取极值,就证得了(3)

条件极值与拉格朗日乘数法

很多情况下,我们都是给定一定的条件求极值,即如下形式的优化问题:目标函数为 y = f ( x 1 , ⋯   , x n ) y=f(x_1,\cdots,x_n) y=f(x1,,xn)条件为
{ g 1 ( x 1 , ⋯   , x n ) = 0 g 2 ( x 1 , ⋯   , x n ) = 0 ⋯ g m ( x 1 , ⋯   , x n ) = 0 \begin{cases} g_1(x_1,\cdots,x_n)=0\\ g_2(x_1,\cdots,x_n)=0\\ \cdots\\ g_m(x_1,\cdots,x_n)=0 \end{cases} g1(x1,,xn)=0g2(x1,,xn)=0gm(x1,,xn)=0其中 m < n mm<n,在该条件下求极值或最值,我们假定 ∂ ( g 1 , ⋯   , g m ) ∂ ( x 1 , ⋯   , x m ) ≠ 0 \frac{\partial(g_1,\cdots,g_m)}{\partial(x_1,\cdots,x_m)}\neq 0 (x1,,xm)(g1,,gm)=0,由隐函数存在定理,就存在隐函数组
{ x 1 = h 1 ( x m + 1 , ⋯   , x n ) ⋯ x m = h m ( x m + 1 , ⋯   , x n ) \begin{cases} x_1 = h_1(x_{m+1},\cdots,x_n)\\ \cdots\\ x_m=h_m(x_{m+1},\cdots,x_n) \end{cases} x1=h1(xm+1,,xn)xm=hm(xm+1,,xn)代入到目标函数中,就化成无条件极值问题
y = F ( x m + 1 , ⋯   , x n ) = f ( h ( x m + 1 , ⋯   , x n ) , x m + 1 , ⋯   , x n ) y=F(x_{m+1},\cdots,x_n)=f(h(x_{m+1},\cdots,x_n),x_{m+1},\cdots,x_n) y=F(xm+1,,xn)=f(h(xm+1,,xn),xm+1,,xn)由取极值的必要条件,就要求
∂ F ∂ x k = 0 k = m + 1 , ⋯   , n \frac{\partial F}{\partial x_k}=0\quad k=m+1,\cdots,n xkF=0k=m+1,,n k = m + 1 , ⋯   , n k=m+1,\cdots,n k=m+1,,n,就有
∑ i = 1 m ∂ h i ∂ x k ∂ f ∂ x i + ∂ f ∂ x k = 0 (2) \tag{2} \sum_{i=1}^m{\frac{\partial h_i}{\partial x_k}\frac{\partial f}{\partial x_i}} +\frac{\partial f}{\partial x_k}=0 i=1mxkhixif+xkf=0(2)由隐函数存在定理,令
J = [ ∂ g 1 ∂ x 1 ⋯ ∂ g 1 ∂ x m ⋯ ⋯ ⋯ ∂ g m ∂ x 1 ⋯ ∂ g m ∂ x m ] J=\left[ \begin{matrix} \frac{\partial g_1}{\partial x_1}&\cdots&\frac{\partial g_1}{\partial x_m}\\ \cdots&\cdots&\cdots\\ \frac{\partial g_m}{\partial x_1}&\cdots&\frac{\partial g_m}{\partial x_m} \end{matrix} \right] J=x1g1x1gmxmg1xmgm由(2),就有 − [ ∂ f ∂ x 1 ⋯ ∂ f ∂ x m ] J − 1 [ ∂ g 1 ∂ x k ⋯ ∂ g m ∂ x k ] + ∂ f ∂ x k = 0 (2) \tag{2} -\left[ \begin{matrix} \frac{\partial f}{\partial x_1}&\cdots&\frac{\partial f}{\partial x_m} \end{matrix} \right]J^{-1} \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right] +\frac{\partial f}{\partial x_k} = 0 [x1fxmf]J1xkg1xkgm+xkf=0(2)
λ = [ λ 1 ⋯ λ m ] = − [ ∂ f ∂ x 1 ⋯ ∂ f ∂ x m ] J − 1 \lambda = \left[ \begin{matrix} \lambda_1&\cdots&\lambda_m \end{matrix} \right] =-\left[ \begin{matrix} \frac{\partial f}{\partial x_1}&\cdots&\frac{\partial f}{\partial x_m} \end{matrix} \right]J^{-1} λ=[λ1λm]=[x1fxmf]J1代入到(3)中,就有 ∂ f ∂ x k + ∑ i = 1 m λ i ∂ g i ∂ x k = 0 \frac{\partial f}{\partial x_k} +\sum_{i=1}^m{\lambda_i\frac{\partial g_i}{\partial x_k}}=0 xkf+i=1mλixkgi=0当然, k = 1 , ⋯   , m k=1,\cdots,m k=1,,m
J − 1 [ ∂ g 1 ∂ x k ⋯ ∂ g m ∂ x k ] J^{-1} \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right] J1xkg1xkgm是线性方程组
J x = [ ∂ g 1 ∂ x k ⋯ ∂ g m ∂ x k ] Jx = \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right] Jx=xkg1xkgm的解,观察 J J J的构造,就有
J − 1 [ ∂ g 1 ∂ x k ⋯ ∂ g m ∂ x k ] = e k J^{-1} \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right] =e_k J1xkg1xkgm=ek即除了第 k k k个变元为1外,其余变元都为0,因此(3)也成立,而(3就相当于以下函数分别对 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn求偏导并等于0 L ( x 1 , ⋯   , x n , λ 1 , ⋯   , λ m ) = f ( x 1 , ⋯   , x n ) + ∑ i = 1 m λ i g i ( x 1 , ⋯   , x n ) L(x_1,\cdots,x_n,\lambda_1,\cdots,\lambda_m)=f(x_1,\cdots,x_n)+\sum_{i=1}^m{\lambda_i g_i(x_1,\cdots,x_n)} L(x1,,xn,λ1,,λm)=f(x1,,xn)+i=1mλigi(x1,,xn)在结合条件,取条件极值的必要条件是以上函数对各变元(包括 λ \lambda λ)的偏导数都为0,因而称为拉格朗日乘数法。但是,以上只是取条件极值的必要条件,还不能确认该点是条件极值点。确认条件极值点,一般来讲有两种方法,第一,利用条件海色矩阵,第二,利用最值的存在性。

你可能感兴趣的:(数学分析)