AbstractQueuedSynchronizer源码分析之共享锁实现

 

doAcquireShared()方法

该方法在共享模式以不响应中断的方式阻塞等待获取锁,实现如下:
1、将当前线程封装成节点入队;
2、在死循环中调用park方法。第一次循环(自旋、acquire loop),或者被唤醒从park方法返回后,会判断前驱节点是否是头节点,以及调用tryAcquire()方法是否返回true,如果这2个条件都为真,由当前节点自己设置为头节点,并将后继节点唤醒,然后return;退出死循环。如果这2个条件不满足,会继续调用park方法阻塞等待。
3、在第二步中,被唤醒从park方法返回后,有一个额外操作就是会判断线程的中断状态,如果中断状态为true,仅仅是设置中断标志位interrupted,不抛出中断异常。

4、在第二步中,在判断那2个条件不满足,和调用park方法阻塞等待之间,还有一个操作就是判断在获取失败后是否应该调用park方法阻塞等待。即shouldParkAfterFailedAcquire方法。在acquire loop中会不断调用该方法retry,使该方法最终总是趋向于返回true。

/**
     * Acquires in shared uninterruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);//将当前线程封装成节点入队
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {   //死循环
                final Node p = node.predecessor();
                if (p == head) { //如果前驱节点是头节点
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r); //当前节点设置为头节点,并唤醒后继节点
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;  //退出死循环
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&   //获取失败后判断是否应该park阻塞等待
                    parkAndCheckInterrupt())  //调用park方法阻塞等待,park方法返回后判断是否中断
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

doAcquireSharedInterruptibly方法

该方法在共享模式以响应中断的方式阻塞获取锁。实现逻辑与doAcquireShared方法是基本相同的。不同的是在从park方法返回后,如果判断线程的中断状态为true,会抛出中断异常。

 /**
     * Acquires in shared interruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

shouldParkAfterFailAcquire方法

该方法在当前节点获取失败时判断是否应该使线程阻塞等待。它会检查和更新前驱结点的状态。在acquire loop中会不断调用该方法retry,使最终总是趋向于返回true:

1、刚入队的节点,他们的waitStatus都是int数据类型的初始值0。

2、对于刚入队的节点,它的前驱节点的waitStatus,要么是0,要么是propagate,要么是cancelled。如果前驱节点的waitStatus是0,在第一次acquire loop中,会使用cas将前驱节点的waitStatus设置为SIGNAL。如果前驱节点的waitStatus是propagate,说明该前驱节点是head节点,在第一次acquire loop中,会使用cas将前驱节点的waitStatus设置为SIGNAL。如果前驱节点的waitStatus是cancelled,会从后遍历直至找到有效的前驱节点。虽然在第一次acquire loop中调用shouldParkAfterFailAcquire方法,它的返回值是false,但是在多次acquire loop后,前驱节点的waitStatus总为SIGNAL,该方法的返回值总是true。

/**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

parkAndCheckInterrupt方法

调用park方法阻塞等待,park方法返回后判断是否中断

/**
     * Convenience method to park and then check if interrupted
     *
     * @return {@code true} if interrupted
     */
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

setHeadAndPropagate方法

将当前节点设置为头节点,并将后继节点唤醒,头节点的waitStatus设为propagate。

 /**
     * Sets head of queue, and checks if successor may be waiting
     * in shared mode, if so propagating if either propagate > 0 or
     * PROPAGATE status was set.
     *
     * @param node the node
     * @param propagate the return value from a tryAcquireShared
     */
    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        /*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus either before
         *     or after setHead) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.
         */
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();  //将后继节点唤醒,头节点的waitStatus设为propagate
        }
    }

doReleaseShared方法

将后继节点唤醒,头节点的waitStatus设为propagate。

在死循环内:

1、获取head节点的waitStatus;

2、如果head节点的waitStatus为SIGNAL,通过cas将head节点的waitStatus改为0,必须确保cas执行成功,否则通过新一轮循环,再次执行cas操作直至成功为止;(死循环与cas构成自旋锁保证cas执行成功)

3、如果第二步执行成功,调用unparkSuccessor方法唤醒后继节点;

4、第三步执行完成后,开始新一轮的循环,判断如果head节点的waitStatus为0,通过cas将head节点的waitStatus改为propagate,必须确保cas执行成功,否则通过新一轮循环,再次执行cas操作直至成功为止;(死循环与cas构成自旋锁保证cas执行成功)

由此可见,head节点的waitStatus为SIGNAL时,通过两步改为propagate:

compareAndSetWaitStatus(h, Node.SIGNAL, 0)

compareAndSetWaitStatus(h, 0, Node.PROPAGATE)

为什么要经过两步,不直接把SIGNAL改为propagate呢?原因在unparkSuccessor方法。如果直接把SIGNAL改为propagate,则在unparkSuccessor方法里又会被设置为0。

5、在第四步完成后,判断当前head节点是否发生改变,如果没有发生改变,break退出死循环。在第三步唤醒后继节点后,后继节点(所在的线程)会将自己设置为头节点,此时head节点就会发生改变,对新head节点继续执行循环,从而实现release propagate。有细心的网友可能就发现了,新head节点也会调用到doReleaseShared方法,这样会存在多个线程同时调用doReleaseShared方法,执行死循环里的逻辑。是的,代码注释也说明了:

Ensure that a release propagates, even if there are other in-progress acquires/releases.

 /**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)
     */
    private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }

unparkSuccessor方法

如果节点的waitStatus为负,通过cas设置为0;找到有效的后继节点,调用unpark方法

 /**
     * Wakes up node's successor, if one exists.
     *
     * @param node the node
     */
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

 

你可能感兴趣的:(java高并发实践)