- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 双目视觉测宽仪系列 模拟人眼高精测量!
蓝鹏测控
其他制造
双目视觉测宽仪系列基于机器视觉原理,两个工业相机就像人的双眼,可以形成立体视觉,这样就可以得到足够的信息判断被测物的距离,修正和消除距离变化对测量的影响,在线检测生产线上产品的宽度值。可广泛应用于轧制材料(热轧、冷轧)、机械部件、钢板、铁板、金属板、厚板等板材类产品的在线检测。具有非接触、实时测量、精度高等优点。技术参数:测量范围:500-3000mm(定制)测量方式:双工业相机,自发光/光源补光
- 科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)
JANGHIGH
科普类无人驾驶自动驾驶人工智能机器学习
科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)双目视觉在自动驾驶中的应用虽然具有许多优势,但也存在一些问题和挑战,这些问题在不同的驾驶环境和条件下可能会有所不同。以下是一些主要问题及其可能的解决方案:立体匹配和视差计算:双目视觉的核心在于通过计算两幅图像之间的视差来获取深度信息。然而,立体匹配算法在处理遮挡、无特征区域或具有重复图案的高纹理区域时可能会出现精度问题。解决方案包括使
- 科普类(双目视觉)——快速索引
JANGHIGH
科普类无人驾驶快速索引自动驾驶
科普类(双目视觉)——快速索引科普类——双目视觉在无人驾驶汽车中的应用(一)科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)科普类——基线的设计对于系统的性能的直接影响(五)科普类——百度Apollo使用的双目系统的硬件型号(六)科普类——进行基线设计、系统测试和优化的立体视
- 科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)在无人驾驶汽车中,视觉SLAM(SimultaneousLocalizationandMapping,即同时定位与地图构建)是一种关键技术,它允许车辆在未知环境中进行自我定位和地图构建。双目视觉系统在视觉SLAM中的应用起到了以下作用:精确定位:双目视觉系统通过计算两幅图像之间的视差,可以提供精确的深度信息。这些信息有助于SLAM算法更准确地估
- 科普类——双目视觉在无人驾驶汽车中的应用(一)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉在无人驾驶汽车中的应用(一)双目视觉在无人驾驶汽车中的应用主要体现在以下几个方面:深度感知与距离测量:双目视觉系统通过两个摄像头同时捕捉同一场景的图像,利用视差(即同一物体在两幅图像中的位置差异)来计算物体的深度信息。这种基于视差的方法可以提供精确的距离测量,帮助无人驾驶汽车判断前方物体的距离,从而进行安全驾驶决策。障碍物检测与避障:双目视觉能够识别并测量前方的障碍物,包括车辆、
- 科普类—— 双目视觉系统在无人驾驶汽车中的安装位置(四)
JANGHIGH
科普类无人驾驶汽车人工智能计算机视觉
科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)在无人驾驶汽车中,双目视觉系统的安装位置和两个相机之间的安装间距(基线)对于系统的性能至关重要。这些参数的选择需要基于工程数据和实际应用需求来确定。以下是一些关于双目视觉系统安装位置和间距的一般指导原则:安装位置:双目摄像头通常安装在车辆的前部,以模拟人类驾驶员的视线。它们应该位于车辆的中心线附近,以确保视野覆盖车辆前方的主要区域。安装高度通常
- 双目相机立体匹配基础
极客范儿
传感器标定双目相机立体匹配
双目匹配就是用左相机和右相机去拍摄同一个点,目的是找到三维世界的同一个点,也就是在左相机和右相机中的成像点之间的像素差(视差),根据视差去求解深度,那么找到左相机点到右相机的同一个对应点这个过程就是双目相机立体匹配。一、双目视觉流程双目视觉流程是通过双目相机的左相机和右相机拍摄标定板的图片制作标定(离线),在线拍摄后进行矫正。满足两个相机是平行的要求,做匹配点也能满足从一维在同一行去搜索,接着进行
- 阅读文章:《编码结构光投影双目视觉三维测量技术研究》
盗将_6ab3
来源:知网《编码结构光投影双目视觉三维测量技术研究》_肖亮主要理解文章中双目结构光系统的测量原理,主要包括投影图案的编码解码技术、参数标定以及点云的生成与融合拼接。此次学习:编码方式之二进制编码、格雷码编码1.编码结构光image.png文章中选择了时域编码中的格雷码编码。所谓时间编码,文中这样说道:“时域编码是一种常用的编码策略,在这种编码方案中一系列的简单图案按时间先后顺序投影到被测物表面,一
- [Python图像处理] 使用OpenCV创建深度图
AI technophile
Python图像处理实战python图像处理计算机视觉
使用OpenCV创建深度图双目视觉创建深度图相关链接双目视觉在传统的立体视觉中,两个摄像机彼此水平移动,用于获得场景上的两个不同视图(作为立体图像),就像人类的双目视觉系统:通过比较这两个图像,可以以视差的形式获得相对深度信息,该视差编码对应图像点的水平坐标的差异。两个立体图像中单个像素的位移量称为视差(disparity),像素的视差与其在场景中的深度成反比。可以用灰度值对每个像素的视差进行编码
- 11. 双目视觉之立体视觉基础
宛如新生
slam中的标定问题数码相机
目录1.深度恢复1.1单目相机缺少深度信息1.2如何恢复场景深度?1.3深度恢复的思路2.对极几何约束2.1直观感受2.2数学上的描述1.深度恢复1.1单目相机缺少深度信息之前学习过相机模型,最经典的就是小孔成像模型。我们知道相机通过小孔成像模型对世界点的观测是缺少深度信息的。我们得到的只是世界点在相机平面上的一个投影。如下图,世界点P只要是在那条红色线上,他在相机上的成像位置就是P‘,所以我们无
- 12. 双目视觉之极线矫正
宛如新生
slam中的标定问题数码相机
目录1.为何要进行极线矫正?2.极线矫正过程。1.为何要进行极线矫正?之前的文章立体视觉基础中介绍单目相机无法获得深度信息,我们可以通过多个相机来实现立体视觉。通过两个相机对某场景同时观测时,当我们知道了相机的内(外)参以及两者之间的基线,然后通过某种方式找到两相机对同一世界点的观测的关联关系(类似特征匹配),就可以计算出视差,最终通过下列公式计算出观测到的世界点的深度。我们假设双目相机已经标定完
- 双目立体视觉——视差图(stereo matching)三种相似度算法实现
7lingqi7
1024程序员节python笔记学习
目录双目立体视觉的理解:平行视图的极几何(第二种实现视差图的思路)图像校正(cameracalibration)实现——相似度匹配,视差计算重要影响参数实验报告讨论部分SGBM算法示例,这个效果更好,速度也更快。【双目视觉】SGBM算法应用(Python版)_落叶随峰的博客-CSDN博客任务:生成视差图关键词:视差原理(平行视图的极几何),图像校正,相似度匹配,视差计算和匹配图片数据集:visio
- Ubuntu 18.04 ———(Intel RealSense D435i)安装kalibr + 双目视觉与IMU标定(2022年)
@曾记否
双目相机ubuntu自动驾驶linux
Ubuntu18.04———(IntelRealSenseD435i)安装kalibr+双目视觉与IMU标定(2022年)一、安装标定工具1.下载编译code_utils2.下载编译imu_utils3.安装kalibr解决:kalibr_calibrate_cameras:未找到命令二、imu标定1.写标定参数文件2.然后运行启动文件3.编写启动文件4.录制imu数据包5.运行校准程序6.回放数
- 在线双目测宽仪 板材实时监测和数据分析!
蓝鹏测控
数码相机
在各种板材类生产领域里,在线品质检测技术都是非常重要的,它很大程度上决定了生产的质量。在线双目测宽仪就是当前很受欢迎的一种宽度在线检测设备,它采用了双目视觉检测技术,实现宽度尺寸的在线检测,功能十分强大,使用起来也非常的便利,目前已经被普遍应用到了钢板、扁钢等行业中。测量原理再利用相机测量宽度时,由于单个相机在成像时存在“近大远小”的现象,并且单靠摄入的图像无法知道被测物的距离,所以由被测物的跳动
- 基于 ZYNQ 的双目视觉图像采集系统设计(二)
QYH2023
fpga开发
Image_controller模块包含2个子模块,如图1所示。I2C_OV5640_Init_RGB565.v模块实现IIC的接口协议和初始化配置,其下有两个子模块:I2C_Controller.v模块实现IIC的读写控制时序,I2C_OV5640_RGB565_Config.v模块则产生IIC寄存器初始化配置的地址和数据;image_capture.v模块实现图像采集和缓存功能。图1.Imag
- 基于 ZYNQ 的双目视觉图像采集系统设计(四)
QYH2023
fpga开发
1、axi_hp0_wr.v模块代码解析该模块实现AXIHP总线写入数据到DDR3的操作。该模块的接口如下。rst_n为系统复位信号;i_clk、i_data_rst_n、i_data_en和i_data为FPGA逻辑需要写入到DDR3的数据输入接口。i_clk为同步时钟信号,i_data_rst_n用于复位FIFO,i_data_en拉高表示数据总线i_data有效,将被写入到FIFO中缓存。余
- 基于 ZYNQ 的双目视觉图像采集系统设计(一)
QYH2023
fpga开发
1、视频采集系统的整体架构如图1所示,这是整个视频采集系统的原理框图。图1视频采集系统架构上电初始,FPGA通过IIC接口对CMOSSensor进行寄存器初始化配置。这些初始化的基本参数,即初始化地址对应的初始化数据都存储在一个预先配置好的FPGA片内ROM中。(这些初始化的参数来源于CMOSSensor芯片手册,这里使用的是OV5640摄像头,要学好FPGA芯片手册一定要会看)在初始化配置完成后
- 论文阅读:Stereo Visual-Inertial Odometry With Online Initialization and Extrinsic Self-Calibration
独孤西
论文阅读论文阅读
前言StereoVisual-InertialOdometryWithOnlineInitializationandExtrinsicSelf-Calibration这篇论文是2023年TIM上的一篇文章,主要是针对双目视觉惯性里程计的初始化问题,实现了一个除了估计IMU偏置,速度,重力,IMU-相机外参和平移比例因子的初始值等参数,同时还可以估计外参的初始化系统。一、问题背景视觉和IMU互补。不
- ZED使用指南(八)Depth Sensing
Happy_Cabbage
ZED2计算机视觉人工智能
ZED立体相机再现了人类双目视觉的工作方式。通过比较左眼和右眼看到的两种视图,不仅可以推断深度,还可以推断空间中的3D运动。ZED立体相机可以捕捉到场景的高分辨率3D视频,通过比较左右图像之间的像素位移可以估计深度和运动。深度感知深度感知是指确定物体之间的距离,以三维的角度看世界。到目前为止,深度传感器仅限于近距离和室内的深度感知,限制了其在手势控制和身体跟踪方面的应用。ZED是第一个使用立体视觉
- 基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
简简单单做算法
MATLAB算法开发#三维重建matlab双目RGB图像图像深度信息三维室内场景建模
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述4.1双目视觉原理4.2深度信息获取4.3表面重建5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022a3.部分核心程序..........................................................................%读取左右RGB图像和对
- ISP IC/FPGA设计-第一部分-MT9V034摄像头分析(0)
芯王国
ISP设计接口隔离原则MT9V034CMOS传感器
MT9V034为CMOS图像传感器,有着极其优秀的图像成像性能,同时支持丰富的功能用于isp的开发;MT9V034的HDR宽动态、10bit数据深度、RAW格式(bayer阵列)图像、dvp和lvds接口、60fps正是学习isp开发的理想传感器;MT9V034有两款类型,一个是单色型号,直接输出灰度的图像,在机器视觉领域应用很广,我的双目视觉毕业设计也是采用这款摄像头;另一个就是彩色款,不过输出
- 【实验记录】(杂七杂八)
白白白白白kkk
笔记
1.基于视觉语义路标的智能手机室内定位与建图研究_高煜昕p19介绍了智能终端的数据集ADVIO数据集,使用iPhone采集,针对视觉和惯导联合开发,具有描述真是复杂场景以及高质量真值的优点。p20论证了vins-mono、vins-fusion和orb-slam3等主流slam框架的性能,对比发现后vins-mono运行ADVIO数据集时的定位与建图更优秀。突发奇想:用双目视觉的回环后的值可以做“
- 视觉测量—相机标定
Mr. a zhen
计算机视觉
随着计算机视觉的飞速发展,计算机视觉已经越来越多的应用于空间几何尺寸的精确测量和定位,摄像机作为视觉测量的关键部件,相机标定自然是视觉测量的一项重要工作。1、标定原因在视觉测量过程中,为确定空间物体特征点的三维几何位置与其在图像中对应点之间的相互关系,必须建立建立相机成像几何模型并矫正透镜畸变,几何模型参数可以认为是相机参数,相机标定就是准确获得相机参数的过程。视觉测量分为单目视觉,双目视觉以及多
- 图像特征提取--ORB算法
时义龙
特征匹配检测算法算法c++开发语言
实时性特征检测可以分为两个部分:图像特征提取与匹配ORB(OrientedFASTandRotatedBRIEF)该特征检测算法是在著名的FAST特征检测和BRIEF特征描述子的基础上提出来的,其运行时间远远优于SIFT和SURF,可应用于实时性特征检测。遇到过这样一个问题,在双目视觉中,使用矫正的两张图片,计算视差时,需要找到匹配点。自己写了一个基于灰度值的线特征匹配算法,但是效果会受到图像效果
- 张正友相机标定(概括总结)
*地瓜*
计算机视觉相机标定张正友张氏标定
目录计算机视觉分类计算机视觉应用相机标定四种坐标系的转换求解内参求解畸变参量实验结果计算机视觉分类这算是本周博主要做的报告的一次腹稿。咱们先从计算机视觉讲起。计算机视觉的定义就是用计算机模拟人的眼睛,让计算机可以通过拍照或视频的方式看到物体,然后通过特征点检测以及匹配等方式识别物体,进而进行追踪,重建等操作,主要就是图像处理。我们从计算机使用的视觉传感器的数量可以将计算机视觉分为单目视觉,双目视觉
- OpenCV快速入门:相机标定——单目视觉和双目视觉
92岁高龄码农
Python#OpenCV数码相机opencv人工智能
文章目录前言一、相机标定的基本原理1.1相机模型与坐标系1.1.1相机模型1.1.2坐标系1.2相机内参与外参1.2.1内部参数1.2.2外部参数1.3镜头畸变1.4透视变换1.5标定的重要性和应用场景二、单目视觉2.1单目视觉的原理2.1.1单目视觉的原理2.1.2单目视觉的公式2.1.3应用领域2.2实现单目视觉标定的步骤2.2.1准备标定板2.2.2捕获标定图像2.2.3提取角点2.2.4计
- 3D重建算法综述
小白学视觉
算法神经网络python计算机视觉机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达三维重建算法广泛应用于手机等移动设备中,常见的算法有SfM,REMODE和SVO等。2.2双目/多目视觉双目视觉主要利用左右相机得到的两幅校正图像找到左右图片的匹配点,然后根据几何原理恢复出环境的三维信息。但该方法难点在于左右相机图片的匹配,匹配地不精确都会影响最后算法成像的效果。多目视觉采用三个或三个以上摄像机来提高匹配的精度
- 单目测距+代码部署(目标检测+车辆/行人等测距)
从懒虫到爬虫
人工智能计算机视觉
本文主要讲述了如何运用单目摄像头进行距离测量,在完成yolo目标检测后我们可以对检测到的目标框进行距离测量。单目视觉测距与双目视觉测距对比测距在智能驾驶的应用中发挥着重要作用。测距方法主要包含两类:主动测距与被动测距,主动测距是当前研究的热点内容之一。主动测距方法包括采用传感器、摄像机、激光雷达等车载设备进行测距。摄像头由于价格相对低廉且性能稳定应用较为广泛,本文采用摄像头进行距离测量。单目测距与
- 双目视觉计算三维坐标
叫小侯的小白程序员
智在飞翔比赛记录数码相机计算机视觉
一、原理双目视觉的基本原理,以及公式推导,我参考的b站上的视频,链接如下:2-线性相机模型-LinearCameraModel-CameraCalibration_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Q34y1n7ot/?p=2&spm_id_from=333.880.my_history.page.click&vd_source=3b6c
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟