python numpy:1 numpy.array和numpy.matrix常用函数使用

#-*- encoding:utf-8 -*-
import numpy
import io
from io import StringIO
#import io.StringIO

def createArray():
    d = numpy.zeros((3,4))
    print(d.dtype)
    print(d.dtype.itemsize)
    oneMatrix = numpy.ones((3,3))
    print(oneMatrix ,int)
    emptyMatrix = numpy.empty((2,3))
    print(emptyMatrix)
    #注意最后一个取不到
    myArange = numpy.arange(10,30,5)
    print(myArange)
    #arange默认为连续数组
    arange2 = numpy.arange(7 , dtype=int)
    print(arange2)

def toType():
    x = numpy.float32(1.0)
    print(x)
    y = numpy.int_([1,2,3])
    print(y)
    z = numpy.arange(3,dtype=numpy.uint8)
    print(z)
    #转换数组元素的类型
    z = z.astype(float)
    print(z)
    print(z.dtype)
    #查看矩阵类型
    d = numpy.dtype(int)
    print(d)
    #判断矩阵类型是否是指定类型
    flag = numpy.issubdtype(d,int)
    print(flag)

#将python数组转换为numpy数组
def toNumpyArray():
    #默认是双精度浮点数float64
    x = numpy.array([2,3,1,0])
    print(x)
    arr = numpy.arange(2,10,dtype=numpy.float)
    print(arr)
    arr2 = numpy.arange(2,3,0.1)
    print(arr2)

    #linspace(beg,end,num),间隔=(end-beg)/(num-1)
    arr3 = numpy.linspace(1,4,6)
    print(arr3)
    ind = numpy.indices((3,3))
    print(ind)

    #读取字符串,生成矩阵
    data = "1, 2, 3\n4, 5, 6"
    #注意:需要的是字符流,需要编码为utf-8的字符流,解码为字符串(更高级)
    arr4 = numpy.genfromtxt(io.BytesIO(data.encode("utf-8")) ,delimiter=',',dtype='f8' )
    #arr4 = numpy.genfromtxt(data ,delimiter=',' )
    print(arr4)


def shape_test():
    #shape():作用:读取矩阵的长度,输入参数为矩阵
    res = numpy.shape([1])
    print(res)
    res2 = numpy.shape([ [1],[2] ])
    print(res2)

def create_unitMatrix():
    #创建单位矩阵
    e = numpy.eye(3)
    print(e)
    print("单位矩阵的形状:")
    print(e.shape)

#转置矩阵
def transportMatrix():
    x = numpy.linspace(0,4,5)
    print("转置前")
    print(x)
    print(x.shape)
    x.shape=(5,1)
    y = numpy.transpose(x)
    print("转置后")
    print(y)
    #transpose的操作依赖于shape参数,对于一维的shape.转置不起作用,[,,]表示行矩阵,[ [,,] ]表示列矩阵

'''
matrix必须是2维,但是numpy arrays可以是多维的
'''
def matrixCompute():
    a = numpy.matrix(
        [
            [1,2,3],
            [4,5,6],
            [7,8,9]
        ]
    )
    m = numpy.ones((3,1),int)
    res = a * m
    print("验证矩阵乘法结果")
    print(res)
    #矩阵加减法
    print("矩阵加法结果")
    e = a + a
    print(e)
    print("矩阵减法结果")
    e = a - a
    print(e)

    #矩阵乘法
    print("矩阵乘法结果")
    b = a * a
    print(b)
    print("dot点乘结果")
    d = numpy.dot(a,a)
    print(d)

    print("转置矩阵函数")
    g = a.transpose()
    print(g)
    print("转置矩阵T")
    g = a.T
    print(g)

    print("逆矩阵**")
    f = a**(-1)
    print(f)

    print("逆矩阵I")
    f = a.I
    print(f)

    #行列式
    j = numpy.linalg.det(a)
    print("行列式")
    print(j)

#矩阵乘法
def matrixMultiply_test():
    # 矩阵中 * 是数组对应元素项城 , dot才是真正的矩阵乘法,我们应该用dot
    a = numpy.array( [ [1,2],[1,1] ] )
    b = numpy.array( [ [1,2],[1,1] ] )
    c = a * b
    print("矩阵对应元素相乘")
    print(c)
    d = numpy.dot(a,b)
    print("矩阵真实乘法")
    print(d)
    e = numpy.eye(3)
    print("单位矩阵")
    print(e)
    print("常数乘以单位矩阵")
    print(3*e)

'''
数组按行求和,按列求和
'''
def matrix_sum():
    #axis = 0表示按列求和,axis=1按行求和
    c = numpy.array( [ [0,1],[0,1] ] )
    a = numpy.sum( [ [0,1],[0,1] ] , axis = 0)
    print(a)
    b = numpy.sum( [ [0,1],[0,1] ] , axis = 1)
    print(b)

    d  = c.sum(axis = 0)
    print(d)
    e = c.sum(axis = 1)
    print(e)

def generateWeightMatrix(Matrix):
    M = len(Matrix[0])
    if M == 0:
        return False
    resultArr = numpy.ones((1, M))
    for row in Matrix:
        rowVal = row.sum()
        newRow = []
        if rowVal != 0:
            newRow = (1.0/rowVal) * row
        else:
            newRow = row
        resultArr = numpy.insert(resultArr , len(resultArr) , values=numpy.array(newRow) , axis=0)
    #删除第一行
    resultArr = numpy.delete(resultArr , 0 , 0)
    return resultArr

'''
矩阵遍历
'''
def matrix_visit():
    #e = numpy.eye(3)
    e = numpy.array( [ [1,0,1],[0,1,0],[0,0,0] ] )
    M = len(e[0])
    rowVecror = e.sum(axis = 1)
    #print(rowVecror)
    #print(e)
    resultArr = numpy.ones((1, M))
    #resultArr = numpy.array([])
    #resultArr = numpy.array([])
    newArr = []
    print("求权值前")
    for row in e:
        print(row)
        rowVal = row.sum()
        newRow = []
        if rowVal != 0:
            newRow = (1.0/rowVal) * row
            #print(newRow)

        else:
            newRow = row
        #print(newRow)
        resultArr = numpy.insert(resultArr , len(resultArr) , values=numpy.array(newRow) , axis=0)
        #resultArr = newArr
    print("求权值后")
    #需要删除一行 numpy.delete(arr,obj,axis=None)
    resultArr = numpy.delete(resultArr , 0 , 0)
    print(resultArr)

    #遍历数组每个元素,用flat
    '''
    for ele in e.flat:
        print(ele)
    '''

'''
修改矩阵,添加一行或一列
'''
def modifyMatrix():
    e = numpy.ones((2,2))
    print(e)
    a = numpy.array([1,1])
    #a = numpy.ones(2)
    print(a)
    b = numpy.array([3,3])
    #e.c_[a]
    '''
    numpy.insert(arr,obj,values,axis=None)
    arr:输入数组
    '''
    #注意insert是返回一个新的数组,axis=0是添加行
    newe = numpy.insert(e , 0 , values=b , axis=0 , )
    print("添加一行后的结果")
    print(newe)
    arr = []
    emptyArr = numpy.array([])
    newe = numpy.insert(emptyArr , 0 , values = b , axis=0)
    print(newe)

def flat_test():
    R = numpy.array([1,2,3])
    for x in R.flat:
        print(x)
        val = str(x)
        print(val)

    results = [ str(round(x,5)) for x in R.flat]
    results = "\t".join(results)
    print(results)
    #results = [ str(round(x) ,5 )) for x in R.flat ]

if __name__ == "__main__":
    #createArray()
    #toType()
    #toNumpyArray()
    '''
    shape_test()
    create_unitMatrix()
    transportMatrix()
    '''
    #matrixCompute()
    #matrixMultiply_test()
    #matrix_sum()
    #matrix_visit()
    #modifyMatrix()
    flat_test()
    Matrix = numpy.array( [ [1,0,1],[0,1,0],[0,0,0] ] )
    resultMatrix = generateWeightMatrix(Matrix)
    print(resultMatrix)

你可能感兴趣的:(numpy)