- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 视觉SLAM十四讲学习笔记——第五讲 相机与图像
晒月光12138
视觉SLAM十四讲学习笔记自动驾驶计算机视觉人工智能
这一讲主要内容就是了解摄像机的成像模型以及OpenCV的使用。1.四种坐标系坐标系基本描述世界坐标系因为摄像机和物体可以随便摆放在空间中的任何位置,所以我们必须用一个固定的坐标系来描述空间中任何物体的位置和摄像机的位置和朝向,这个基准坐标系我们称之为世界坐标系。在计算机视觉中,我们通常把世界坐标系定义为摄像机坐标系或者所观测的物体的中心。摄像机坐标系摄像机坐标系的原点是摄像机的光心,X、Y轴分别平
- 视觉slam十四讲学习笔记(四)相机与图像
苦瓜汤补钙
视觉SLAM十四讲笔记相机机器学习
理解理解针孔相机的模型、内参与径向畸变参数。理解一个空间点是如何投影到相机成像平面的。掌握OpenCV的图像存储与表达方式。学会基本的摄像头标定方法。目录前言一、相机模型1针孔相机模型2畸变单目相机的成像过程3双目相机模型4RGB-D相机模型二、图像计算机中图像的表示三、图像的存取与访问1安装OpenCV2存取与访问总结前言前面介绍了“机器人如何表示自身位姿”的问题,部分地解释了SLAM经典模型中
- ORB-SLAM3运行自制数据集进行定位教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━IMUORB-SLAM3
目前手上有一个特定的任务,做应急救援的视觉SLAM,目前公共数据集比较少,考虑自建数据集,从网络上爬虫火灾、地震的等手机录制的视屏,应用一些现有成熟ORB-SLAM3系统到这个数据集上看效果,然后根据效果得到一些模型改进思路。文章目录一、系统配置二、制作数据集1、脚本编写2、配置文件编写3、录制视频素材4、修改CMakeLists.txt5、编译运行一、系统配置系统版本ubuntu20.04Ope
- 视觉SLAM十四讲学习笔记(二)三维空间刚体
苦瓜汤补钙
视觉SLAM十四讲笔记计算机视觉算法
哔哩哔哩课程连接:视觉SLAM十四讲ch3_哔哩哔哩_bilibili目录一、旋转矩阵1点、向量、坐标系2坐标系间的欧氏变换3变换矩阵与齐次坐标二、实践:Eigen(1)运行报错记录与解决三、旋转向量和欧拉角1旋转向量2欧拉角四、四元数1四元数的定义2四元数的运算3用四元数表示旋转4四元数到旋转矩阵的转换五、实践:Eigen(2)useGeometryvisualizeGeometry总结前言问题
- 视觉slam十四讲学习笔记(三)李群与李代数
苦瓜汤补钙
视觉SLAM十四讲笔记人工智能学习
1.理解李群与李代数的概念,掌握SO(3),SE(3)与对应李代数的表示方式。2.理解BCH近似的意义。3.学会在李代数上的扰动模型。4.使用Sophus对李代数进行运算。目录前言一、李群李代数基础1群2李代数的引出3李代数的定义4李代数so(3)5李代数se(3)二、指数与对数映射1SO(3)上的指数映射2SE(3)上的指数映射三、李代数求导与扰动模型1BCH公式与近似形式2SO(3)李代数上的
- 视觉SLAM十四讲学习笔记(一)初识SLAM
苦瓜汤补钙
计算机视觉人工智能
目录前言一、传感器1传感器分类2相机二、经典视觉SLAM框架1视觉里程计2后端优化3回环检测4建图5SLAM系统三、SLAM问题的数学表述四、Ubuntu20.04配置SLAM十四讲前言SLAM:SimultaneousLocalizationandMapping同时定位与地图构建(建图)。搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环地的模型。同时储计自己的运动。视觉SLA
- 【SLAM14讲编译依赖软件源码版本方面等问题汇总】
终问鼎
自动驾驶-SLAMc++自动驾驶buglinuxubuntu
"逆转鹈鹕”0.视觉SLAM十四讲1.ch3-------Eigen32.ch4-------Sophus2.ch5-------JoinMap3.ch63.1---ceres3.2---g2o4.ch7--视觉里程计5.--ch8associate.py6.--ch9project以下是本人在学习SLAM中遇到的全部问题汇总(主要是依赖和软件方面的)。0.视觉SLAM十四讲1.ch3------
- 《视觉SLAM十四讲》第九讲前段实践中g2o实践代码报错解决方法
大二哈
在《视觉SLAM十四讲》中针对于g2o初始化部分代码是无法执行的,在高博的Git上的代码也是无法编译的,会报错:error:nomatchingfunctionforcallto‘g2o::BlockSolver>::BlockSolver(g2o::BlockSolver>::LinearSolverType*&)’定位报错的代码段如下:typedefg2o::BlockSolver>Block
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 【视觉SLAM十四讲学习笔记】第六讲——状态估计问题
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 【视觉SLAM十四讲学习笔记】第六讲——非线性最小二乘
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- INDEMIND双目惯性模组运行实时ORB-SLAM3教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━ORB-SLAM3INDEMINDROSubuntu20.04imu
现在实验室视觉SLAM已经不够满足,所以需要多模态融合,正巧购入高翔博士推荐的INDEMIND双目惯性模组,根据官方例程在中使用ROS接入ORB-SLAM3,这回有SDK及ORB-SLAM3安装过程中的各种常见性问题解决方法及安装细节,与官网教程略有不同,列举所有默认安装的依赖,做以记录。文章目录实验环境一、SDK安装1、SDK下载及准备安装2、安装依赖3、然后使用git下载SDK4、准备安装SD
- 科普类(双目视觉)——快速索引
JANGHIGH
科普类无人驾驶快速索引自动驾驶
科普类(双目视觉)——快速索引科普类——双目视觉在无人驾驶汽车中的应用(一)科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)科普类——基线的设计对于系统的性能的直接影响(五)科普类——百度Apollo使用的双目系统的硬件型号(六)科普类——进行基线设计、系统测试和优化的立体视
- 科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)在无人驾驶汽车中,视觉SLAM(SimultaneousLocalizationandMapping,即同时定位与地图构建)是一种关键技术,它允许车辆在未知环境中进行自我定位和地图构建。双目视觉系统在视觉SLAM中的应用起到了以下作用:精确定位:双目视觉系统通过计算两幅图像之间的视差,可以提供精确的深度信息。这些信息有助于SLAM算法更准确地估
- 【ORB-SLAM2源码梳理1】以单目mono_tum.cc为例,构建SLAM系统(含mono_tum.cc、System.cc关键代码解析)
Jay_z在造梦
ORB-SLAM2c++slamorb
文章目录前言一、进入mono_tum.cc1.导入TUM数据集图片:LoadImages()2.构建SLAM系统:System3.系统构建结束,开启跟踪线程1)一帧帧地读取对应路径下的rgb图像:2)将图像帧传入Tracking线程,开始一系列操作(关键):二、代码导图前言因为对于视觉SLAM而言,单目涉及初始化等步骤,相对于双目和RGBD较为复杂,故从单目学起。学习记录。一、进入mono_tum
- 手把手带你死磕ORBSLAM3源代码(六十四) LocalMapping.cc LocalMapping Run
安城安
数据库服务器网络运维vimlinuxc语言
目录一.前言二.代码2.1完整代码一.前言以下是对该方法功能的详细解释:mbFinished被设置为false,表示局部映射过程尚未完成。方法进入一个无限循环,这是因为在视觉SLAM中,局部映射是一个持续进行的过程,需要不断地处理新的关键帧和地图点。通过调用SetAcceptKeyFrames(false)方法,局部映射告诉追踪器(Tracker)它目前正在忙,不应该接受新的关键帧。这是为了确保局
- 视觉SLAM十四讲|【四】误差Jacobian推导
影子鱼Alexios
algorithm机器学习机器人
视觉SLAM十四讲|【四】误差Jacobian推导预积分误差递推公式ω=12((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))\omega=\frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g))ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))其中,wbkw_b^kw
- 视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式
影子鱼Alexios
algorithm控制理论机器学习机器人人工智能
视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式基本推导方法无时间戳延迟时,残差计算流程:世界坐标系中的第lll个地图点变换到相机坐标系下为flw=[x,y,z]Tf_l^w=[x,y,z]^Tflw=[x,y,z]T变换到相机坐标系下为flci=RcbRwbiT(flw−pwbi)+pcbf_l^{c_i}=R_{cb}R_{wb_i}^T(f_l^w-p_{wb_i})+p_{c
- 《SLAM十四讲》Ch7编译报错
Prejudices
SLAMSLAM
《SLAM十四讲》Ch7编译报错原因:视觉SLAM书上的程序使用的g2o版本比较旧了,使用的是c++11版本的g2o。而自己在编译g2o的时候编译的是最新版本的g2o,里面大量使用了c++14标准库的一些新特性,比如std::index_sequence等等。而书上的CMakeLists.txt默认使用的是c++11进行cmake编译,所以报错解决:CMakeLists.txt中更改如下:set(
- openvslam------slam解读系列
xiechaoyi123
SLAM系列slamoptimization
是什么:openvslam是日本先进工业科技研究(NationalInstituteofAdvancedIndustrialScienceandTechnology)所于2019年5月20日开源的视觉SLAM框架;github源码地址:https://github.com/xdspacelab/openvslam干什么的:先上图:通过不同类型的相机(单目,双目,RGBD,鱼眼或者全景相机)拍摄的序
- ORB_SLAM3:IMU初始化过程梳理以及自己的理解
追风筝的人~TH
ORB_SLAM3计算机视觉人工智能c++
LocalMapping线程中IMU初始化:1、为什么要进行初始化?因为无法保证世界坐标系(单目初始化参考关键帧)的Z轴正好与重力方向平行,二者有角度,计算该角度的过程就是IMU初始化的过程。2、IMU初始化过程中不断优化尺度,在单目相机的视觉SLAM中,尺度指的是场景中真实物体的物理尺寸与它在相机图像中所对应的像素距离之间的比例关系。在视觉SLAM中,尺度是一个非常重要的概念,因为它决定了相机观
- 第一个项目总结:双目测距(python代码转为c++代码,最终输出点云图,再转为ros点云图,再实现可视化)
zerogin+
c++opencv开发语言
目录1.双目成像原理2.双目测距python代码3.python代码转为c++代码(1)双目相机参数(2)立体校正(3)立体匹配4.opencv的点云图转为ros点云图1.双目成像原理摘自《视觉SLAM十四讲》2.双目测距python代码(46条消息)双目测距理论及其python实现_python双目测距_javastart的博客-CSDN博客具体过程为:双目标定-->立体校正(含消除畸变)-->
- SLAM中的二进制词袋生成过程和工作原理
深蓝学院
机器学习人工智能
长期视觉SLAM(SimultaneousLocalizationandMapping)最重要的要求之一是鲁棒的位置识别。经过一段探索期后,当长时间未观测到的区域重新观测时,标准匹配算法失效。当它们被健壮地检测到时,回环检测提供正确的数据关联以获得一致的地图。用于环路检测的相同方法可用于机器人在轨迹丢失后的重新定位,例如由于突然运动,严重闭塞或运动模糊。词袋的基本技术包括从机器人在线收集的图像中建
- 【视觉SLAM十四讲学习笔记】第五讲——相机模型
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 2023-01-04日志
独孤西
今天学习了惯导的一节课与视觉SLAM视觉里程计的部分知识。惯性导航方面,主要学习了加速度计和陀螺的基本实现原理,了解了不同类型的惯性传感器,区分ISA、IMU、INS,知道了平台式与捷联式的区别,对惯导的精度等级分类也有了了解,并对惯导发展历史进行了学习。视觉里程计方面,主要学习了ORB特征点法的工作原理,了解了对极几何的原理,对视觉里程计的2D-2D估计过程有了更全面的了解。视觉SLAM的数学原
- 视觉SLAM十四讲|【五】相机与IMU时间戳同步
影子鱼Alexios
机器人机器学习
视觉SLAM十四讲|【五】相机与IMU时间戳同步相机成像方程Z[uv1]=[fx0cx0fycy001][XYZ]=KPZ\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&c_x\\0&f_y&c_y\\0&0&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\end{bmatrix}=KPZuv1=fx000
- 视觉SALM与激光SLAM的区别
Jiqiang_z
LOAM系列阅读笔记SLAM学习笔记机器学习人工智能深度学习
前言:这里比较一下视觉SLAM和激光SLAM的区别,仅比较其在算法层面上的一些不同,这里拿视觉SLAM算法:ORB-SLAM系列和激光SLAM算法:LOAM系列对比。一:特征提取1.ORB-SLAM(视觉SLAM)ORB-SLAM算法采用ORB特征点,ORB特征点一般提取在角点上面,每一个ORB特征点具有以下信息:位置信息:该ORB特征点所在的图像像素坐标。描述子信息:用来描述该特征点的周围信息。
- 视觉SLAM和激光SLAM适合的应用领域以及哪个更有前景
稻壳特筑
SLAMSLAM
目录视觉SLAM的应用领域激光SLAM的应用领域视觉SLAM优势和局限性激光SLAM优势和局限性发展趋势和前景视觉SLAM的应用领域增强现实(AR)和虚拟现实(VR):视觉SLAM能够提供丰富的视觉信息,有助于在现实世界中叠加虚拟图像,适用于AR眼镜和VR头显。消费电子产品:在智能手机、平板电脑等设备上,视觉SLAM可以用于室内导航、三维建模和交互游戏。机器人:小型或成本敏感的机器人,如家用清洁机
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发