- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 吴恩达卷积神经网络学习笔记(六)|CSDN创作打卡
墨倾许
深度学习神经网络计算机视觉
3.2特征点检测神经网络可以通过输出图片上特征点的(x,y)坐标,来实现对目标特征的识别。我们来看几个例子,假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置,眼角坐标为(x,y),你可以让神经网络的最后一层,多出两个数字lx和ly,作为眼角的坐标值.如果你想知道两只眼睛的4个眼角的具体位置,那么从左到右依次用4个特征点来表示这4个眼角,对神经网络稍微做些修改,输出第1
- 吴恩达卷积神经网络学习笔记(二)
墨倾许
cnn深度学习机器学习
一.卷积神经网络(一)1.6三维卷积3指的是颜色通道(RGB)6*6*3分别对应宽*高*通道的数目滤波器也有相对应的3*3*3,由此得到一个4*4的输出。对三维图像进行卷积时,卷积核的通道数要与三维图像的通道数相等。当我们想对图像的多个边缘特征进行检测时,我们可以使用多个卷积核,这样卷积后生成图像的通道数为使用的卷积核的个数。对于三维卷积具体运算的实例如下:如果使用的是下图3*3*3的卷积核,则一
- [2020-01-13]神经网络学习笔记-梯度验证&参数初始化
wheatfox
看了斯坦福的机器学习视频,讲到神经网络的梯度验证以及参数初始化的部分,记录一下。1.梯度验证有时候训练时,梯度也确实是在下降,但是可能并不是沿着一个比较好的方向,结果导致最后的停止点不是停在相对最优的地方。这时候可以采用梯度验证,即利用某点处的近似理论梯度值来和实际梯度值对比。处的近似理论梯度值:2.参数初始化如果参数初始化为0或者1等常数的话,那么每一层的每个神经元的输出值都会相同(不管迭代多少
- Python深度学习入门 - - 卷积神经网络学习笔记
szu_ljm
深度学习pythoncnn
文章目录一、卷积神经网络简介二、卷积神经网络的数学原理1、卷积层2、池化层3、感受野三、Python实战卷积神经网络1、LetNet-5网络2、Resnet残差网络3、VGGNet迁移学习总结一、卷积神经网络简介卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)是一种具有局部连接、权值共享等特点的深层前馈神经网络(FeedforwardNeuralNetworks)
- Python深度学习入门 - - 人工神经网络学习笔记
szu_ljm
python深度学习学习
文章目录前言一、神经网络原理1、输入层2、全连接层3、激活函数4、损失函数5、前向传播6、反向传播二、Python实战神经网络1.权重初始化技巧2.梯度问题技巧3.模型泛化技巧总结前言如果说机器学习是人工智能的皇冠,深度学习就是这顶皇冠上的明珠,深度学习的出现为人工智能领域的发展拉开了新的序幕。与常见的机器学习模型不同的是,深度学习的数据量更大,特征参数更多,但更重要的是深度学习不需要人为准备特征
- 深度学习神经网络学习笔记-多模态方向-12-DBpedia: A Nucleus for a Web of Open Data
丰。。
多模态神经网络论文研读神经网络神经网络学习笔记多模态人工智能
摘要DBpedia是一个社区努力从维基百科中提取结构化信息,并使这些信息在网络上可用。DBpedia允许您对来自维基百科的数据集提出复杂的查询,并将网络上的其他数据集链接到维基百科数据。我们描述了DBpedia数据集的提取,以及产生的信息如何在网络上发布,供人类和机器消费。我们描述了来自DBpedia社区的一些新兴应用,并展示了网站作者如何在他们的网站内促进DBpedia内容的发展。最后,我们介绍
- 深度学习神经网络学习笔记-多模态方向-11-Deep Voice: Real-time Neural Text-to-Speech
丰。。
多模态神经网络论文研读神经网络深度学习神经网络学习多模态
摘要本文提出DeepVoice,一种完全由深度神经网络构建的生产质量文本到语音系统。DeepVoice为真正的端到端神经语音合成奠定了基础。该系统由五个主要的构建模块组成:用于定位音素边界的分割模型、字素到音素的转换模型、音素时长预测模型、基频预测模型和音频合成模型。对于分割模型,我们提出了一种使用连接时序分类(CTC)损失的深度神经网络执行音素边界检测的新方法。对于音频合成模型,我们实现了Wav
- 深度学习神经网络学习笔记-自然语言处理方向-论文研读-情感分析/文本分类-textcnn
丰。。
深度学习神经网络-NLP方向神经网络论文研读神经网络自然语言处理深度学习人工智能神经网络语言模型
本文目录概念引入摘要大意TextCNN模型的结构正则化手段该模型的超参数研究成果概念引入逻辑回归线性回归时间序列分析神经网络self-attention与softmax的推导word2evcglove摘要大意在使用简单的CNN模型在预训练词向量的基础上进行微调就可以在文本分类任务上就能得到很好的结果。通过对词向量进行微调而获得的任务指向的词向量就能得到更好的结果。同时也提出了一种即使用静态预训练词
- CNN卷积神经网络学习笔记(特征提取)
sinounuo
cnn学习笔记
一、CNN卷积神经网络可以干的事情:检测任务分类和检索:超分辨率重构:字体识别、人脸识别、医学任务、自动驾驶任务等总结:特征提取相关二、卷积神经网络的整体架构:(1)输入层H*W*C的三维数据(2)卷积层(提取特征)权重参数矩阵filterW当前区域数据:将输入数据划分成小区域,对每个区域进行特征提取滑动窗口步长:卷积核尺寸:H*W,一般是3*3边缘填充:边缘的点被提取次数少,所以给边界paddi
- 深度学习神经网络学习笔记-论文研读-transformer及代码复现参考
丰。。
神经网络论文研读机器学习笔记神经网络深度学习神经网络学习transformer
摘要优势序列转导模型基于复杂的循环或包括一个编码器和一个解码器的卷积神经网络。最好的表现良好的模型还通过attention连接编码器和解码器机制。我们提出了一种新的简单的网络架构,Transformer,完全基于注意力机制,省去了递归和卷积完全。在两个机器翻译任务上的实验表明,这些模型可以质量优越,同时具有更强的并行性和显著的要求训练时间更少。我们的模型在WMT2014英语-上达到28.4BLEU
- 深度学习神经网络学习笔记-多模态方向-13- Multimodal machine learning: A survey and taxonomy
丰。。
多模态神经网络论文研读神经网络机器学习深度学习神经网络多模态
本文为简单机翻,参考学习用1多模态机器学习:综述与分类TadasBaltruˇsaitis,ChaitanyaAhuja,和Louis-PhilippeMorency抽象——我们对世界的体验是多模态的——我们看到物体,听到声音,感觉到纹理,闻到气味,尝到味道。模态是指某件事情发生或体验的方式,当一个研究问题包含多个这样的模态时,它就被称为多模态。为了让人工智能在理解我们周围的世界方面取得进展,它需
- 神经网络:损失函数
nightwish夜愿
神经网络学习笔记-损失函数的定义和微分证明http://www.cnblogs.com/steven-yang/p/6357775.html
- d2l卷积神经网络学习笔记(2)——浅谈残差网络ResNet
Tsparkle
学习之路学习深度学习cnn
1.关于残差网络残差网络从实现原理上并不复杂,但是关于具体的原理一开始比较难理解,找了一些资料也有了一点想法。(1).我们要解决什么问题首先,网络的性能并不是随网络层数加深而上升的,这是很符合直觉的,毕竟有过拟合的先例。但是实际上,即使网络还处于欠拟合,更深层次的网络也会导致性能的下降,也就是网络退化,要理清这一现象,需要先引入一个概念,恒等映射。恒等映射简单的讲就是f(x)=x,在我们预期中,一
- bp神经网络matlab实例_人工神经网络学习笔记2——MATLAB神经网络工具箱
weixin_39853210
bp神经网络matlab实例matlabbp神经网络工具箱matlab高斯过程工具箱matlab神经网络工具箱人工势场法matlab讲解
神经网络理论的初学者可以利用MATLAB自带的神经网络工具箱来理解ANN算法。神经网络工具箱模型包括如下内容:·感知器·线性网络·BP网络·径向基函数网络·竞争型神经网络·自组织网络和学习向量量化网络·反馈网络神经网络工具箱的使用在命令行窗口输入nnstart,可以打开MATLAB提供的神经网络图形用户界面,如图1所示:图1神经网络图形用户界面再次点击该界面的‘Fittingapp’按钮,打开神经
- 神经网络学习笔记(三)——长短时记忆(LSTM)网络
shuyitingting
机器学习
LSTM网络是循环神经网络的一种特殊类型,它可以学习长期以来的信息,它是一种拥有三个“门”结构的特殊网络结构。1.LSTM网络结构原始RNN的隐藏层只有一个状态h,如图1(a),它对于短期的输入非常敏感。LSTM网络增加一个状态c,让它保存长期的状态,如图1(b)。图1新增状态c,称为单元状态。把图1(b)按照时间维度展开,如图2所示。图2由上图可以看出:在t时刻,LSTM网络的输入有三个,即当前
- 吴恩达卷积神经网络学习笔记(一)
星_阳
深度学习cnn计算机视觉
一.卷积神经网络(一)1.1计算机视觉图片分类和图片识别,目标检测,图片风格迁移特征向量的维度卷积神经网络一般应用于计算机视觉领域,由于有的时候图片的像素点很多,导致神经网络输入特征值的维数很多。1.2边缘检测示例弄清一张照片中的物体,利用电脑进行去识别,垂直边缘检测,水平边缘检测。如下图所示,原图是一个661的矩阵,卷积核是一个331的矩阵,经过卷积后得到一个441的矩阵。(为了检测图像中的垂直
- 神经网络学习笔记(二)——循环神经网络RNN
Storm*Rage
循环神经网络RNN文章目录循环神经网络RNN一、概述二、背景三、RNN原理3.1模型结构3.2前向传播3.3反向传播BPTT(back-propagationthroughtime)3.4RNN的分类3.5RNN的改进双向RNN深度RNN四、RNN的简单使用五、总结一、概述 循环神经网络(Recurrentneuralnetwork,RNN)是一类以序列(sequence)数据为输入,在序列的演
- 动手学深度学习(现代卷积神经网络学习笔记)
遥感人遥感魂
动手学深度学习深度学习cnn学习
现代卷积神经网络之前的传统的机器学习方式,是传入人工制作选取的图像特征作为输入,训练后送入分类器中,如今是原始图像(可能裁剪)输入网络进行训练。计算机视觉研究人员相信,从对最终模型精度的影响来说,更大或更干净的数据集、或是稍微改进的特征提取,比任何学习算法带来的进步要大得多。大纲主要有以下结构,学习这些结构,包含的思想,有助于以后自己网络模型的搭建AlexNet。它是第一个在大规模视觉竞赛中击败传
- 神经网络学习笔记9——循环神经网络中的LSTM模型和GRU模型
RanceGru
深度学习rnnlstm神经网络
系列文章目录LSTM视频参考GRU视频参考文章目录系列文章目录前言一、LSTM模型结构二、GRU模型结构三、GRU与LSTM的比较前言循环神经网络(RecurrentNeuralNetwork,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN就能够很好地解决这类问题。LSTM是RNN的一种,
- 神经网络学习笔记(三)——长短期记忆网络LSTM
Storm*Rage
长短期记忆网络LSTM文章目录长短期记忆网络LSTM一、概述二、背景三、LSTM原理3.1模型结构3.2前向传播3.3反向传播3.4LSTM的变体3.4.1PeepholeConnection3.4.2Coupled四、LSTM的简单使用五、总结一、概述 长短期记忆网络——通常被称为LSTM,是一种特殊的RNN,能够学习长期依赖性。由Hochreiter和Schmidhuber(1997)提出,
- 小白的神经网络学习
summer_bugs
神经网络机器学习tensorflow
小白的神经网络学习笔记文章目录小白的神经网络学习笔记一.环境配置二.感知器(Perceptron)单层感知器多层感知器(MLP,MultilayerPerceptron)Keras实现三.逻辑回归与交叉熵关于sparse_categorical_crossentropy&categorical_crossentropy关于独热编码(one-hotkey)在Python中的应用Keras实现四.tf
- 经典神经网络学习笔记之LeNet(附带代码)
我很懒但我很软乎
深度学习lenet
本文是对经典论文“Gradient-BasedLearningAppliedtoDocumentRecognition”的阅读笔记之一,主要介绍LeNet的结构以及参数个数的计算,结合“DeepLearningforComputerVisionwithPythonstarterbundle”所介绍的原理和实验所写。笔者才疏学浅,还望指教。一、理论部分LeNet首次出现是在1998年的论文中,基于梯
- 神经网络学习笔记——鸢尾花分类
XL_0502
神经网络学习笔记神经网络tensorflow
TensorFlow笔记——鸢尾花分类代码笔记记录实验流程和代码功能,附上关于所涉及到的tensorflow库中函数的解释实验流程数据集读入数据集乱序生成训练集和测试集(即x_train/y_train)数据类型转换配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网路中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss测试效果计算当前参数前向传播后的准
- 神经网络学习笔记(3)——梯度下降公式讲解与反向传播算法
野指针小李
数学深度学习神经网络深度学习神经网络算法
结合上上两篇文章的叙述,这一篇文章主要讲解梯度的公式的推导,笔记来自于3B1B的视频,链接会放在最后。同样的,这一篇文章依旧没有代码。上篇文章中稍稍写漏了点东西,就是说在梯度下降过程中,步长是与该点的斜率有关,如果无关的话,那么如果步长太大,是不是就从坑中心滚过去了呀?比如这样:下面开始正文。每层只有一个神经元根据上篇文章的内容,梯度会有正有负,代表的意思就是这个点该如何移动。而每一项的相对大小告
- 神经网络学习笔记8——FPN理论及代码理解
RanceGru
深度学习神经网络学习计算机视觉
系列文章目录目标分割相关的RPNB站讲解文章目录系列文章目录前言一、金字塔结构图(a)图(b)图(c)图(d)二、FPN结构1、局部2、整体代码前言特征金字塔(FeaturePyramidNetworks,FPN)的基本思想是通过构造一系列不同尺度的图像或特征图进行模型训练和测试,目的是提升检测算法对于不同尺寸检测目标的鲁棒性。但如果直接根据原始的定义进行FPN计算,会带来大额的计算开销。为了降低
- 神经网络学习笔记4——自动编码器(含稀疏,堆叠)(更新中)
奥利奥好吃呀
学习深度学习神经网络
目录配套讲解视频1.程序和数据集2.自动编码器2.1自编码器原理2.2代码实现3.堆叠式自编码器4.稀疏自编码器4.1稀疏编码4.2.稀疏自编码器配套讲解视频建议配合视频阅读博文10分钟学会自动编码器从原理到编程实现_哔哩哔哩_bilibili10分钟学会自动编码器从原理到编程实现1.程序和数据集链接:https://pan.baidu.com/s/1aSNq94BJuKsiKO5gNGF29Q提
- 神经网络学习笔记2.2 ——用Matlab写一个简单的卷积神将网络图像分类器
奥利奥好吃呀
matlabcnn分类深度学习神经网络
配套视频讲解10分钟学会matlab实现cnn图像分类_哔哩哔哩_bilibili10分钟学会matlab实现cnn图像分类整体代码链接:https://pan.baidu.com/s/1btnY-jZXMK9oj3ZQxDvz8g提取码:k4v8可以打开代码,我来一步一步为你讲解,每步的含义,还有你该如何使用!目录1.为了便于理解,这里说一些基本概念,会的直接跳过程序在后面1.1通道数1.2全连
- 图卷积神经网络学习笔记
四十不嚯
机器学习神经网络gcn机器学习深度学习
图卷积神经网络学习笔记前言整体看待从卷积、CNN、GCN的关系来切入GNN与GCN的关系图的特征图的特征分析特征提取方式spectraldomainGCN的特征提取方式从拉普拉斯矩阵的特征分解开始Graph上的傅里叶变换Graph上的卷积定理第一类GCN卷积核第二类GCN卷积核第三类GCN卷积核(Chebyshev)后记前言这篇文章是作者在初次接触学习GNN/GCN的过程中为了方便理解而记录下的个
- 深度学习(二):深度学习与神经网络学习笔记(手记)
夜风里唱
深度学习深度学习
下面的照片顺序可能与当时学习记录的顺序不一致。1.感知机模型,CNN模型的前身:2.sigmoid激活函数:3.神经网络的前向传播与反向传播计算过程例子:4.神经网络的前向传播与反向传播计算过程例子(续):5.Relu、Softmax,Sigmod激活函数,mnist、cifar10CNN模型,以及Keras开发平台模型类型:6.BatchNorm的概念以及安装Tensorflow的一些流程:7.
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方