- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- 【论文阅读】RadHAR:通过毫米波雷达生成的点云识别人类活动
dotJunz
论文阅读论文阅读
文章目录原文题目摘要1引言2背景2.1毫米波雷达3RADHAR概述3.1数据收集和预处理3.2MMActvity数据集3.3数据预处理3.4分类器4评价5结论原文题目RadHAR:HumanActivityRecognitionfromPointCloudsGeneratedthroughaMillimeter-waveRadar摘要准确的人类活动识别(HAR)是实现新兴的情境感知应用的关键,这些
- 【论文】点云识别与分割:PointNet
杨keEpsTrong-
点云深度学习神经网络python
1引言早期三维场景的识别与分割主要有三种方法,一是多视角,即将多张二维图片堆叠成三维立体做以处理,二是体素化,即对若干能表达实体的立方体素进行处理,三是非欧式处理。点云相较来说容易获取且表达简单,PointNet就是一种点云的识别与分割的方法。2分析点云主要有三个性质,它决定其不可使用简单的深度学习方法进行分割处理;一是无序性,即点云的输入是无序的,但是其在空间中呈现的效果不会因顺序发生改变;二是
- 『点云识别』基于对应分组的三维物体识别
爱钓鱼的歪猴
点云深度学习机器学习人工智能点云识别
SHOT特征描述子SHOT(SignatureofHistogramsofOrientations)是一种用于描述点云特征的算法。它基于点云的法线信息和局部区域的形态分布统计,用于表示点云中的局部形状信息。SHOT特征描述子在三维物体识别、匹配和配准等任务中广泛应用。SHOT特征描述子的计算步骤如下:选择一个中心点,并计算该点的法线方向。在该中心点周围选择若干个邻域点(例如,使用半径搜索或Kd树搜
- 点云识别-多个目标物体配准
小修勾
PCL点云学习经验分享
点云配准-多个目标物体配准综述算法流程过程结论综述常见的点云配准都是单一配准,最经典的为粗配+icp精配准。本文依据pcl中cg算法,利用hough进行识别。算法流程1、计算法线2、均匀降采样3、shot描述子计算4、寻找对应关系5、利用hough进行配准过程1、原始点云如下(注:点云数据来自鹏力3D相机)2、配准显示:3、配准结果:绿色为模板点云,红色为配准后的点云,蓝色为采样后的模板与场景点云
- 3D点云识别安全吗? 学界提出健壮性分析数据集:ModelNet40-C
Amusi(CVer)
计算机视觉机器学习人工智能深度学习python
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达3D点云识别安全吗?学界提出健壮性分析数据集ModelNet40-C点云失真为3D深度学习带来新的挑战!论文:BenchmarkingRobustnessof3DPointCloudRecognitionAgainstCommonCorruptions论文地址:https://arxiv.org/abs/2201.12296项目主
- 基于PCL的QT开发(两个月内更新完)
小修勾
PCL点云学习PCLQT开发qt点云pcl
《QT+PCL学习记录》最新补充:《QT+PCL》补充一、《QT+PCL第一章》基本操作二、《QT+PCL第二章》点云显示三、《QT+PCL第三章》点云滤波四、《QT+PCL第四章》点云关键点五、《QT+PCL第五章》点云特征六、《QT+PCL第六章》点云配准七、《QT+PCL第七章》点云分割八、《QT+PCL第八章》点云识别九、《QT+PCL第九章》点云重建最新补充:《QT+PCL》补充《QT+
- 点云数据滤波处理(PCL实现)
深圳视觉软件JJ
C#算法计算机视觉人工智能
引:点云数据滤波处理(PCL实现)-简书2020.01.0314:29:02字数942阅读5,412点云数据滤波处理(PCL实现)1.滤波器介绍点云目标识别的流程:数据采集->滤波->点云分割->点云识别,数据采集可以通过RGBD相机或者激光雷达等设备采集。由于采集设备精度,环境因素,光照因素,物体表面性质等影响,会导致点云数据不可避免的出现噪音。滤波过程就是为了解决点云数据密度不规则不平滑,离群
- 点云上的卷积神经网络及其部分应用
深蓝学院
人工智能3D点云计算机视觉卷积神经网络
本次公开课由李伏欣老师主讲,李伏欣老师是美国俄勒冈州立大学助力教授,公开课主要介绍了涵盖3D点云领域的研究,并重点介绍了李老师近期的最新工作内容。公开课回放链接:https://www.shenlanxueyuan.com/open/course/33本次分享首先介绍了最近几年的两篇经典论文中3D点云识别的工作,详细介绍PointNet++与PointNet;接着由传统CNN入手,逐渐引入Poin
- 点云特征提取及分类、VFH、SVM、CNN
SensorFusion
点云模型训练分类几何学机器学习
随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的深度学习方法研究则进展缓慢。分析其背后的原因,不外乎三个方面:1.点云具有无序性。受采集设备以及坐标系影响,同一个物体使用不同的设备或者位置扫描,三
- 【3D点云识别】PointNet++论文及代码解读
KirutoCode
VOS
PointNet++论文及代码理解解决什么问题本文创新点\贡献前人方法方法问题定义方法概述HierarchicalPointSetFeatureLearningRobustFeatureLearningunderNon-UniformSamplingDensityPointFeaturePropagationforSetSegmentation代码数据读取基本函数网络结构错误记录实验结果解决什么问
- 【点云识别】Adaptive Hierarchical Down-Sampling for Point Cloud Classification(CVPR 2020)
orientliu96
点云识别点云
AdaptiveHierarchicalDown-SamplingforPointCloudClassification本文介绍一篇cvpr2020里面关于点云分类降采样的文章。论文没有开源代码1.问题FPS的时间复杂度太高,类似Samplenet的方法会产生新的点,随机采样无法保证重要的点被保留下来。所以本文提出了一种不产生新的点的采样方法。2.思想整体思想非常简单,借鉴pointnet中最后的
- 【点云识别】D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features(CVPR 2020 Oral)
orientliu96
点云识别
D3Feat:JointLearningofDenseDetectionandDescriptionof3DLocalFeatures本文介绍一篇cvpr2020里面关于点云matching的文章。论文代码1.问题PointCloudMatching。前人的工作没有将点云的dectection和descriptors联合起来学习,会导致detector不能匹配上descriptor的能力。2.思想
- 【点云识别】Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels(CVPR 2020)
orientliu96
点云识别
WeaklySupervisedSemanticPointCloudSegmentation:Towards10xFewerLabels本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题点云的弱监督分割2.思想根据弱监督的特点,提出了incompletesupervisionbranch和inexactsupervisionbranch。同时,作者认为任何一个
- 【点云识别】Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds
orientliu96
点云识别
Multi-PathRegionMiningForWeaklySupervised3DSemanticSegmentationonPointClouds本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题目前获得大规模点云已经不是一件困难的事情了,但是对其进行标注是十分费时。例如ScanNet数据集,对一个scan标注时间的中位数和平均数大概是16.8min和2
- 【点云识别】PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation (CVPR 2020)
orientliu96
点云识别
PointGroup:Dual-SetPointGroupingfor3DInstanceSegmentation本文介绍一篇cvpr2020里面关于点云实例分割的文章。论文目前还没有开源代码1.问题和2D图片不同,3D点云不存在遮挡现象,存在大量的voidspace,本文想充分利用voidspace进行分割。2.思想那么如何利用这些voidspace呢?本文采取一种shift的思想,正因为voi
- 【点云识别】PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding (ECCV 2020)
orientliu96
点云识别点云
PointContrast:UnsupervisedPre-trainingfor3DPointCloudUnderstanding本文介绍一篇ECCV2020里面关于点云无监督预训练的文章。论文目前还没有开源代码1.问题点云无监督预训练2.思想点云的预训练领域处于比较空白的状态,本文focuson高级别的场景理解任务,提出了一种无监督的PointContrast与训练方法。文章主体依赖于FCGF
- 【点云识别】Mapping in a Cycle: Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes ECCV2020
orientliu96
点云识别点云
MappinginaCycle:SinkhornRegularizedUnsupervisedLearningforPointCloudShapes本文介绍一篇ECCV2020里面关于点云无监督学习的文章。论文目前还没有开源代码1.问题点云形状的无监督学习2.思想本文的主体思路是延续Unsupervisedcycle-consistentdeformationforshapematching这篇文
- 【点云识别】Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud(CVPR 2020)
orientliu96
点云识别
Feature-metricRegistration:AFastSemi-supervisedApproachforRobustPointCloudRegistrationwithoutCorrespondences本文介绍一篇cvpr2020里面关于点云半监督配准的文章。论文没有开源代码1.问题点云的弱监督配准问题2.思想followpointlk的一份工作,认为不同位姿的点云提取出的特征是不同
- 视频教程-机器学习导论(理论课程全面录制)-机器学习
weixin_32153439
机器学习导论(理论课程全面录制)乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥99.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习导论(理论课程全面录制)-机器学习学
- 视频教程-机器学习概论--入门精讲视频-机器学习
weixin_30385511
机器学习概论--入门精讲视频乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥49.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习概论--入门精讲视频-机器学习学习有效期
- 【点云识别】3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation (CVPR 2020)
orientliu96
点云识别
3D-MPA:MultiProposalAggregationfor3DSemanticInstanceSegmentation本文介绍一篇cvpr2020里面关于点云识别的文章。论文目前还没有开源代码1.问题3D目标检测的主要难点在于如何预测和处理objectproposal。一种思路是是自上而下的方式,先回归大量的box,然后再进行第二阶段的优化。但是如果box的偏差比较大,此类方法就很难奏效
- 点云特征提取--vfh
阿GEM是我的
模式识别&图像处理
开始做点云识别了,在matlab上自己写了一个点云特征提取脚本,跑出来的效果还不错,于是想跟pcl官网的点云特征提取算法比较一下,看看两者在识别上谁会好一点。vfh代码我参考某位博主的,忘记是谁了阿。我封装成了一个函数,输入点云,返回308维的点云特征。#include#include//法线特征pcl::PointCloudGetVFHFeature(pcl::PointCloud::Ptrcl
- 点云识别-Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
alfred_torres
点云识别
2020AAAI一种关注几何特征的点云分类和Part分割网络摘要原文译文Inspiteoftherecentprogressesonclassifying3DpointcloudwithdeepCNNs,largegeometrictransformationslikerotationandtranslationremainchallengingproblemandharmthefinalclas
- 3D 点云识别: Geometric Feedback Network for Point Cloud Classification
alfred_torres
点云识别
GeometricFeedbackNetworkforPointCloudClassification用于点云分类的几何特征反馈网络2019/12/2arXiv摘要Asthebasictaskofpointcloudlearning,classificationisfundamentalbutalwayschallenging.分类任务作为点云学习中的基础任务,是至关重要并且一直存在挑战性。Toa
- 3D点云数据结合深度学习入门基础(目标篇)
可乐粑粑
3D识别与语义分割
最近,老师让我们研究深度学习与3D点云数据的研究方向,开始时,确实也不清楚何为3D点云,以及深度学习。由于实验室师弟师妹全部是做深度学习识图相关横向研究工作的,所以很快的就掌握了,深度学习识图技术,主要是应用于平面图片的目标检测与分割(分类)工作。而其目标图片为我们日常使用电脑经常见到的各类Png,jpg等图片格式。但是3D点云识别又是个什么格式的东西呢,对于没接触到的朋友,第一感觉就是,我们识别
- 点云识别-Learning to Sample
alfred_torres
点云识别
LearningtoSample2019CVPR摘要原文译文Processinglargepointcloudsisachallengingtask.Therefore,thedataisoftensampledtoasizethatcanbeprocessedmoreeasily.处理大规模点云是一项具有挑战性的任务,因此,一般把点云下采样到数量较少的size,方便处理Thequestionis
- 【点云识别】RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020 Oral)
orientliu96
点云识别
RandLA-Net:EfficientSemanticSegmentationofLarge-ScalePointClouds本文介绍一篇cvpr2020里面关于大场景下点云分割的文章。论文代码1.问题为了解决的问题很直接,超大规模的点云分割2.思想网络架构如上,本文花了大量的时间论述针对超大规模的点云场景,目前只能使用随机采样这种快速的采样方法。对比部分可以详见论文。为了与随机采样这种方法相适
- 视频教程-机器学习算法之线性模型视频教学-机器学习
weixin_30392923
机器学习算法之线性模型视频教学乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥117.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习算法之线性模型视频教学-机器学习学习
- 【点云识别】Learning to Segment 3D Point Clouds in 2D Image Space (CVPR 2020)
orientliu96
点云识别
LearningtoSegment3DPointCloudsin2DImageSpace本文介绍一篇cvpr2020里面关于点云部件分割的文章。论文代码1.问题相比于2DU-net的架构上,点云上的部件分割没有取得比较好的进展。所以这篇文章,将3D点云投影到2D空间上,再使用U-net的架构进行分割,取得的效果可谓是遥遥领先!2.思想整体流程就是以下三步Constructgraphsfrompoi
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那