- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- 【论文阅读】RadHAR:通过毫米波雷达生成的点云识别人类活动
dotJunz
论文阅读论文阅读
文章目录原文题目摘要1引言2背景2.1毫米波雷达3RADHAR概述3.1数据收集和预处理3.2MMActvity数据集3.3数据预处理3.4分类器4评价5结论原文题目RadHAR:HumanActivityRecognitionfromPointCloudsGeneratedthroughaMillimeter-waveRadar摘要准确的人类活动识别(HAR)是实现新兴的情境感知应用的关键,这些
- 【论文】点云识别与分割:PointNet
杨keEpsTrong-
点云深度学习神经网络python
1引言早期三维场景的识别与分割主要有三种方法,一是多视角,即将多张二维图片堆叠成三维立体做以处理,二是体素化,即对若干能表达实体的立方体素进行处理,三是非欧式处理。点云相较来说容易获取且表达简单,PointNet就是一种点云的识别与分割的方法。2分析点云主要有三个性质,它决定其不可使用简单的深度学习方法进行分割处理;一是无序性,即点云的输入是无序的,但是其在空间中呈现的效果不会因顺序发生改变;二是
- 『点云识别』基于对应分组的三维物体识别
爱钓鱼的歪猴
点云深度学习机器学习人工智能点云识别
SHOT特征描述子SHOT(SignatureofHistogramsofOrientations)是一种用于描述点云特征的算法。它基于点云的法线信息和局部区域的形态分布统计,用于表示点云中的局部形状信息。SHOT特征描述子在三维物体识别、匹配和配准等任务中广泛应用。SHOT特征描述子的计算步骤如下:选择一个中心点,并计算该点的法线方向。在该中心点周围选择若干个邻域点(例如,使用半径搜索或Kd树搜
- 点云识别-多个目标物体配准
小修勾
PCL点云学习经验分享
点云配准-多个目标物体配准综述算法流程过程结论综述常见的点云配准都是单一配准,最经典的为粗配+icp精配准。本文依据pcl中cg算法,利用hough进行识别。算法流程1、计算法线2、均匀降采样3、shot描述子计算4、寻找对应关系5、利用hough进行配准过程1、原始点云如下(注:点云数据来自鹏力3D相机)2、配准显示:3、配准结果:绿色为模板点云,红色为配准后的点云,蓝色为采样后的模板与场景点云
- 3D点云识别安全吗? 学界提出健壮性分析数据集:ModelNet40-C
Amusi(CVer)
计算机视觉机器学习人工智能深度学习python
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达3D点云识别安全吗?学界提出健壮性分析数据集ModelNet40-C点云失真为3D深度学习带来新的挑战!论文:BenchmarkingRobustnessof3DPointCloudRecognitionAgainstCommonCorruptions论文地址:https://arxiv.org/abs/2201.12296项目主
- 基于PCL的QT开发(两个月内更新完)
小修勾
PCL点云学习PCLQT开发qt点云pcl
《QT+PCL学习记录》最新补充:《QT+PCL》补充一、《QT+PCL第一章》基本操作二、《QT+PCL第二章》点云显示三、《QT+PCL第三章》点云滤波四、《QT+PCL第四章》点云关键点五、《QT+PCL第五章》点云特征六、《QT+PCL第六章》点云配准七、《QT+PCL第七章》点云分割八、《QT+PCL第八章》点云识别九、《QT+PCL第九章》点云重建最新补充:《QT+PCL》补充《QT+
- 点云数据滤波处理(PCL实现)
深圳视觉软件JJ
C#算法计算机视觉人工智能
引:点云数据滤波处理(PCL实现)-简书2020.01.0314:29:02字数942阅读5,412点云数据滤波处理(PCL实现)1.滤波器介绍点云目标识别的流程:数据采集->滤波->点云分割->点云识别,数据采集可以通过RGBD相机或者激光雷达等设备采集。由于采集设备精度,环境因素,光照因素,物体表面性质等影响,会导致点云数据不可避免的出现噪音。滤波过程就是为了解决点云数据密度不规则不平滑,离群
- 点云上的卷积神经网络及其部分应用
深蓝学院
人工智能3D点云计算机视觉卷积神经网络
本次公开课由李伏欣老师主讲,李伏欣老师是美国俄勒冈州立大学助力教授,公开课主要介绍了涵盖3D点云领域的研究,并重点介绍了李老师近期的最新工作内容。公开课回放链接:https://www.shenlanxueyuan.com/open/course/33本次分享首先介绍了最近几年的两篇经典论文中3D点云识别的工作,详细介绍PointNet++与PointNet;接着由传统CNN入手,逐渐引入Poin
- 点云特征提取及分类、VFH、SVM、CNN
SensorFusion
点云模型训练分类几何学机器学习
随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的深度学习方法研究则进展缓慢。分析其背后的原因,不外乎三个方面:1.点云具有无序性。受采集设备以及坐标系影响,同一个物体使用不同的设备或者位置扫描,三
- 【3D点云识别】PointNet++论文及代码解读
KirutoCode
VOS
PointNet++论文及代码理解解决什么问题本文创新点\贡献前人方法方法问题定义方法概述HierarchicalPointSetFeatureLearningRobustFeatureLearningunderNon-UniformSamplingDensityPointFeaturePropagationforSetSegmentation代码数据读取基本函数网络结构错误记录实验结果解决什么问
- 【点云识别】Adaptive Hierarchical Down-Sampling for Point Cloud Classification(CVPR 2020)
orientliu96
点云识别点云
AdaptiveHierarchicalDown-SamplingforPointCloudClassification本文介绍一篇cvpr2020里面关于点云分类降采样的文章。论文没有开源代码1.问题FPS的时间复杂度太高,类似Samplenet的方法会产生新的点,随机采样无法保证重要的点被保留下来。所以本文提出了一种不产生新的点的采样方法。2.思想整体思想非常简单,借鉴pointnet中最后的
- 【点云识别】D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features(CVPR 2020 Oral)
orientliu96
点云识别
D3Feat:JointLearningofDenseDetectionandDescriptionof3DLocalFeatures本文介绍一篇cvpr2020里面关于点云matching的文章。论文代码1.问题PointCloudMatching。前人的工作没有将点云的dectection和descriptors联合起来学习,会导致detector不能匹配上descriptor的能力。2.思想
- 【点云识别】Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels(CVPR 2020)
orientliu96
点云识别
WeaklySupervisedSemanticPointCloudSegmentation:Towards10xFewerLabels本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题点云的弱监督分割2.思想根据弱监督的特点,提出了incompletesupervisionbranch和inexactsupervisionbranch。同时,作者认为任何一个
- 【点云识别】Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds
orientliu96
点云识别
Multi-PathRegionMiningForWeaklySupervised3DSemanticSegmentationonPointClouds本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题目前获得大规模点云已经不是一件困难的事情了,但是对其进行标注是十分费时。例如ScanNet数据集,对一个scan标注时间的中位数和平均数大概是16.8min和2
- 【点云识别】PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation (CVPR 2020)
orientliu96
点云识别
PointGroup:Dual-SetPointGroupingfor3DInstanceSegmentation本文介绍一篇cvpr2020里面关于点云实例分割的文章。论文目前还没有开源代码1.问题和2D图片不同,3D点云不存在遮挡现象,存在大量的voidspace,本文想充分利用voidspace进行分割。2.思想那么如何利用这些voidspace呢?本文采取一种shift的思想,正因为voi
- 【点云识别】PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding (ECCV 2020)
orientliu96
点云识别点云
PointContrast:UnsupervisedPre-trainingfor3DPointCloudUnderstanding本文介绍一篇ECCV2020里面关于点云无监督预训练的文章。论文目前还没有开源代码1.问题点云无监督预训练2.思想点云的预训练领域处于比较空白的状态,本文focuson高级别的场景理解任务,提出了一种无监督的PointContrast与训练方法。文章主体依赖于FCGF
- 【点云识别】Mapping in a Cycle: Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes ECCV2020
orientliu96
点云识别点云
MappinginaCycle:SinkhornRegularizedUnsupervisedLearningforPointCloudShapes本文介绍一篇ECCV2020里面关于点云无监督学习的文章。论文目前还没有开源代码1.问题点云形状的无监督学习2.思想本文的主体思路是延续Unsupervisedcycle-consistentdeformationforshapematching这篇文
- 【点云识别】Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud(CVPR 2020)
orientliu96
点云识别
Feature-metricRegistration:AFastSemi-supervisedApproachforRobustPointCloudRegistrationwithoutCorrespondences本文介绍一篇cvpr2020里面关于点云半监督配准的文章。论文没有开源代码1.问题点云的弱监督配准问题2.思想followpointlk的一份工作,认为不同位姿的点云提取出的特征是不同
- 视频教程-机器学习导论(理论课程全面录制)-机器学习
weixin_32153439
机器学习导论(理论课程全面录制)乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥99.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习导论(理论课程全面录制)-机器学习学
- 视频教程-机器学习概论--入门精讲视频-机器学习
weixin_30385511
机器学习概论--入门精讲视频乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥49.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习概论--入门精讲视频-机器学习学习有效期
- 【点云识别】3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation (CVPR 2020)
orientliu96
点云识别
3D-MPA:MultiProposalAggregationfor3DSemanticInstanceSegmentation本文介绍一篇cvpr2020里面关于点云识别的文章。论文目前还没有开源代码1.问题3D目标检测的主要难点在于如何预测和处理objectproposal。一种思路是是自上而下的方式,先回归大量的box,然后再进行第二阶段的优化。但是如果box的偏差比较大,此类方法就很难奏效
- 点云特征提取--vfh
阿GEM是我的
模式识别&图像处理
开始做点云识别了,在matlab上自己写了一个点云特征提取脚本,跑出来的效果还不错,于是想跟pcl官网的点云特征提取算法比较一下,看看两者在识别上谁会好一点。vfh代码我参考某位博主的,忘记是谁了阿。我封装成了一个函数,输入点云,返回308维的点云特征。#include#include//法线特征pcl::PointCloudGetVFHFeature(pcl::PointCloud::Ptrcl
- 点云识别-Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
alfred_torres
点云识别
2020AAAI一种关注几何特征的点云分类和Part分割网络摘要原文译文Inspiteoftherecentprogressesonclassifying3DpointcloudwithdeepCNNs,largegeometrictransformationslikerotationandtranslationremainchallengingproblemandharmthefinalclas
- 3D 点云识别: Geometric Feedback Network for Point Cloud Classification
alfred_torres
点云识别
GeometricFeedbackNetworkforPointCloudClassification用于点云分类的几何特征反馈网络2019/12/2arXiv摘要Asthebasictaskofpointcloudlearning,classificationisfundamentalbutalwayschallenging.分类任务作为点云学习中的基础任务,是至关重要并且一直存在挑战性。Toa
- 3D点云数据结合深度学习入门基础(目标篇)
可乐粑粑
3D识别与语义分割
最近,老师让我们研究深度学习与3D点云数据的研究方向,开始时,确实也不清楚何为3D点云,以及深度学习。由于实验室师弟师妹全部是做深度学习识图相关横向研究工作的,所以很快的就掌握了,深度学习识图技术,主要是应用于平面图片的目标检测与分割(分类)工作。而其目标图片为我们日常使用电脑经常见到的各类Png,jpg等图片格式。但是3D点云识别又是个什么格式的东西呢,对于没接触到的朋友,第一感觉就是,我们识别
- 点云识别-Learning to Sample
alfred_torres
点云识别
LearningtoSample2019CVPR摘要原文译文Processinglargepointcloudsisachallengingtask.Therefore,thedataisoftensampledtoasizethatcanbeprocessedmoreeasily.处理大规模点云是一项具有挑战性的任务,因此,一般把点云下采样到数量较少的size,方便处理Thequestionis
- 【点云识别】RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020 Oral)
orientliu96
点云识别
RandLA-Net:EfficientSemanticSegmentationofLarge-ScalePointClouds本文介绍一篇cvpr2020里面关于大场景下点云分割的文章。论文代码1.问题为了解决的问题很直接,超大规模的点云分割2.思想网络架构如上,本文花了大量的时间论述针对超大规模的点云场景,目前只能使用随机采样这种快速的采样方法。对比部分可以详见论文。为了与随机采样这种方法相适
- 视频教程-机器学习算法之线性模型视频教学-机器学习
weixin_30392923
机器学习算法之线性模型视频教学乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥117.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习算法之线性模型视频教学-机器学习学习
- 【点云识别】Learning to Segment 3D Point Clouds in 2D Image Space (CVPR 2020)
orientliu96
点云识别
LearningtoSegment3DPointCloudsin2DImageSpace本文介绍一篇cvpr2020里面关于点云部件分割的文章。论文代码1.问题相比于2DU-net的架构上,点云上的部件分割没有取得比较好的进展。所以这篇文章,将3D点云投影到2D空间上,再使用U-net的架构进行分割,取得的效果可谓是遥遥领先!2.思想整体流程就是以下三步Constructgraphsfrompoi
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><