- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- 【论文阅读】RadHAR:通过毫米波雷达生成的点云识别人类活动
dotJunz
论文阅读论文阅读
文章目录原文题目摘要1引言2背景2.1毫米波雷达3RADHAR概述3.1数据收集和预处理3.2MMActvity数据集3.3数据预处理3.4分类器4评价5结论原文题目RadHAR:HumanActivityRecognitionfromPointCloudsGeneratedthroughaMillimeter-waveRadar摘要准确的人类活动识别(HAR)是实现新兴的情境感知应用的关键,这些
- 【论文】点云识别与分割:PointNet
杨keEpsTrong-
点云深度学习神经网络python
1引言早期三维场景的识别与分割主要有三种方法,一是多视角,即将多张二维图片堆叠成三维立体做以处理,二是体素化,即对若干能表达实体的立方体素进行处理,三是非欧式处理。点云相较来说容易获取且表达简单,PointNet就是一种点云的识别与分割的方法。2分析点云主要有三个性质,它决定其不可使用简单的深度学习方法进行分割处理;一是无序性,即点云的输入是无序的,但是其在空间中呈现的效果不会因顺序发生改变;二是
- 『点云识别』基于对应分组的三维物体识别
爱钓鱼的歪猴
点云深度学习机器学习人工智能点云识别
SHOT特征描述子SHOT(SignatureofHistogramsofOrientations)是一种用于描述点云特征的算法。它基于点云的法线信息和局部区域的形态分布统计,用于表示点云中的局部形状信息。SHOT特征描述子在三维物体识别、匹配和配准等任务中广泛应用。SHOT特征描述子的计算步骤如下:选择一个中心点,并计算该点的法线方向。在该中心点周围选择若干个邻域点(例如,使用半径搜索或Kd树搜
- 点云识别-多个目标物体配准
小修勾
PCL点云学习经验分享
点云配准-多个目标物体配准综述算法流程过程结论综述常见的点云配准都是单一配准,最经典的为粗配+icp精配准。本文依据pcl中cg算法,利用hough进行识别。算法流程1、计算法线2、均匀降采样3、shot描述子计算4、寻找对应关系5、利用hough进行配准过程1、原始点云如下(注:点云数据来自鹏力3D相机)2、配准显示:3、配准结果:绿色为模板点云,红色为配准后的点云,蓝色为采样后的模板与场景点云
- 3D点云识别安全吗? 学界提出健壮性分析数据集:ModelNet40-C
Amusi(CVer)
计算机视觉机器学习人工智能深度学习python
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达3D点云识别安全吗?学界提出健壮性分析数据集ModelNet40-C点云失真为3D深度学习带来新的挑战!论文:BenchmarkingRobustnessof3DPointCloudRecognitionAgainstCommonCorruptions论文地址:https://arxiv.org/abs/2201.12296项目主
- 基于PCL的QT开发(两个月内更新完)
小修勾
PCL点云学习PCLQT开发qt点云pcl
《QT+PCL学习记录》最新补充:《QT+PCL》补充一、《QT+PCL第一章》基本操作二、《QT+PCL第二章》点云显示三、《QT+PCL第三章》点云滤波四、《QT+PCL第四章》点云关键点五、《QT+PCL第五章》点云特征六、《QT+PCL第六章》点云配准七、《QT+PCL第七章》点云分割八、《QT+PCL第八章》点云识别九、《QT+PCL第九章》点云重建最新补充:《QT+PCL》补充《QT+
- 点云数据滤波处理(PCL实现)
深圳视觉软件JJ
C#算法计算机视觉人工智能
引:点云数据滤波处理(PCL实现)-简书2020.01.0314:29:02字数942阅读5,412点云数据滤波处理(PCL实现)1.滤波器介绍点云目标识别的流程:数据采集->滤波->点云分割->点云识别,数据采集可以通过RGBD相机或者激光雷达等设备采集。由于采集设备精度,环境因素,光照因素,物体表面性质等影响,会导致点云数据不可避免的出现噪音。滤波过程就是为了解决点云数据密度不规则不平滑,离群
- 点云上的卷积神经网络及其部分应用
深蓝学院
人工智能3D点云计算机视觉卷积神经网络
本次公开课由李伏欣老师主讲,李伏欣老师是美国俄勒冈州立大学助力教授,公开课主要介绍了涵盖3D点云领域的研究,并重点介绍了李老师近期的最新工作内容。公开课回放链接:https://www.shenlanxueyuan.com/open/course/33本次分享首先介绍了最近几年的两篇经典论文中3D点云识别的工作,详细介绍PointNet++与PointNet;接着由传统CNN入手,逐渐引入Poin
- 点云特征提取及分类、VFH、SVM、CNN
SensorFusion
点云模型训练分类几何学机器学习
随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的深度学习方法研究则进展缓慢。分析其背后的原因,不外乎三个方面:1.点云具有无序性。受采集设备以及坐标系影响,同一个物体使用不同的设备或者位置扫描,三
- 【3D点云识别】PointNet++论文及代码解读
KirutoCode
VOS
PointNet++论文及代码理解解决什么问题本文创新点\贡献前人方法方法问题定义方法概述HierarchicalPointSetFeatureLearningRobustFeatureLearningunderNon-UniformSamplingDensityPointFeaturePropagationforSetSegmentation代码数据读取基本函数网络结构错误记录实验结果解决什么问
- 【点云识别】Adaptive Hierarchical Down-Sampling for Point Cloud Classification(CVPR 2020)
orientliu96
点云识别点云
AdaptiveHierarchicalDown-SamplingforPointCloudClassification本文介绍一篇cvpr2020里面关于点云分类降采样的文章。论文没有开源代码1.问题FPS的时间复杂度太高,类似Samplenet的方法会产生新的点,随机采样无法保证重要的点被保留下来。所以本文提出了一种不产生新的点的采样方法。2.思想整体思想非常简单,借鉴pointnet中最后的
- 【点云识别】D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features(CVPR 2020 Oral)
orientliu96
点云识别
D3Feat:JointLearningofDenseDetectionandDescriptionof3DLocalFeatures本文介绍一篇cvpr2020里面关于点云matching的文章。论文代码1.问题PointCloudMatching。前人的工作没有将点云的dectection和descriptors联合起来学习,会导致detector不能匹配上descriptor的能力。2.思想
- 【点云识别】Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels(CVPR 2020)
orientliu96
点云识别
WeaklySupervisedSemanticPointCloudSegmentation:Towards10xFewerLabels本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题点云的弱监督分割2.思想根据弱监督的特点,提出了incompletesupervisionbranch和inexactsupervisionbranch。同时,作者认为任何一个
- 【点云识别】Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds
orientliu96
点云识别
Multi-PathRegionMiningForWeaklySupervised3DSemanticSegmentationonPointClouds本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题目前获得大规模点云已经不是一件困难的事情了,但是对其进行标注是十分费时。例如ScanNet数据集,对一个scan标注时间的中位数和平均数大概是16.8min和2
- 【点云识别】PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation (CVPR 2020)
orientliu96
点云识别
PointGroup:Dual-SetPointGroupingfor3DInstanceSegmentation本文介绍一篇cvpr2020里面关于点云实例分割的文章。论文目前还没有开源代码1.问题和2D图片不同,3D点云不存在遮挡现象,存在大量的voidspace,本文想充分利用voidspace进行分割。2.思想那么如何利用这些voidspace呢?本文采取一种shift的思想,正因为voi
- 【点云识别】PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding (ECCV 2020)
orientliu96
点云识别点云
PointContrast:UnsupervisedPre-trainingfor3DPointCloudUnderstanding本文介绍一篇ECCV2020里面关于点云无监督预训练的文章。论文目前还没有开源代码1.问题点云无监督预训练2.思想点云的预训练领域处于比较空白的状态,本文focuson高级别的场景理解任务,提出了一种无监督的PointContrast与训练方法。文章主体依赖于FCGF
- 【点云识别】Mapping in a Cycle: Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes ECCV2020
orientliu96
点云识别点云
MappinginaCycle:SinkhornRegularizedUnsupervisedLearningforPointCloudShapes本文介绍一篇ECCV2020里面关于点云无监督学习的文章。论文目前还没有开源代码1.问题点云形状的无监督学习2.思想本文的主体思路是延续Unsupervisedcycle-consistentdeformationforshapematching这篇文
- 【点云识别】Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud(CVPR 2020)
orientliu96
点云识别
Feature-metricRegistration:AFastSemi-supervisedApproachforRobustPointCloudRegistrationwithoutCorrespondences本文介绍一篇cvpr2020里面关于点云半监督配准的文章。论文没有开源代码1.问题点云的弱监督配准问题2.思想followpointlk的一份工作,认为不同位姿的点云提取出的特征是不同
- 视频教程-机器学习导论(理论课程全面录制)-机器学习
weixin_32153439
机器学习导论(理论课程全面录制)乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥99.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习导论(理论课程全面录制)-机器学习学
- 视频教程-机器学习概论--入门精讲视频-机器学习
weixin_30385511
机器学习概论--入门精讲视频乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥49.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习概论--入门精讲视频-机器学习学习有效期
- 【点云识别】3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation (CVPR 2020)
orientliu96
点云识别
3D-MPA:MultiProposalAggregationfor3DSemanticInstanceSegmentation本文介绍一篇cvpr2020里面关于点云识别的文章。论文目前还没有开源代码1.问题3D目标检测的主要难点在于如何预测和处理objectproposal。一种思路是是自上而下的方式,先回归大量的box,然后再进行第二阶段的优化。但是如果box的偏差比较大,此类方法就很难奏效
- 点云特征提取--vfh
阿GEM是我的
模式识别&图像处理
开始做点云识别了,在matlab上自己写了一个点云特征提取脚本,跑出来的效果还不错,于是想跟pcl官网的点云特征提取算法比较一下,看看两者在识别上谁会好一点。vfh代码我参考某位博主的,忘记是谁了阿。我封装成了一个函数,输入点云,返回308维的点云特征。#include#include//法线特征pcl::PointCloudGetVFHFeature(pcl::PointCloud::Ptrcl
- 点云识别-Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
alfred_torres
点云识别
2020AAAI一种关注几何特征的点云分类和Part分割网络摘要原文译文Inspiteoftherecentprogressesonclassifying3DpointcloudwithdeepCNNs,largegeometrictransformationslikerotationandtranslationremainchallengingproblemandharmthefinalclas
- 3D 点云识别: Geometric Feedback Network for Point Cloud Classification
alfred_torres
点云识别
GeometricFeedbackNetworkforPointCloudClassification用于点云分类的几何特征反馈网络2019/12/2arXiv摘要Asthebasictaskofpointcloudlearning,classificationisfundamentalbutalwayschallenging.分类任务作为点云学习中的基础任务,是至关重要并且一直存在挑战性。Toa
- 3D点云数据结合深度学习入门基础(目标篇)
可乐粑粑
3D识别与语义分割
最近,老师让我们研究深度学习与3D点云数据的研究方向,开始时,确实也不清楚何为3D点云,以及深度学习。由于实验室师弟师妹全部是做深度学习识图相关横向研究工作的,所以很快的就掌握了,深度学习识图技术,主要是应用于平面图片的目标检测与分割(分类)工作。而其目标图片为我们日常使用电脑经常见到的各类Png,jpg等图片格式。但是3D点云识别又是个什么格式的东西呢,对于没接触到的朋友,第一感觉就是,我们识别
- 点云识别-Learning to Sample
alfred_torres
点云识别
LearningtoSample2019CVPR摘要原文译文Processinglargepointcloudsisachallengingtask.Therefore,thedataisoftensampledtoasizethatcanbeprocessedmoreeasily.处理大规模点云是一项具有挑战性的任务,因此,一般把点云下采样到数量较少的size,方便处理Thequestionis
- 【点云识别】RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020 Oral)
orientliu96
点云识别
RandLA-Net:EfficientSemanticSegmentationofLarge-ScalePointClouds本文介绍一篇cvpr2020里面关于大场景下点云分割的文章。论文代码1.问题为了解决的问题很直接,超大规模的点云分割2.思想网络架构如上,本文花了大量的时间论述针对超大规模的点云场景,目前只能使用随机采样这种快速的采样方法。对比部分可以详见论文。为了与随机采样这种方法相适
- 视频教程-机器学习算法之线性模型视频教学-机器学习
weixin_30392923
机器学习算法之线性模型视频教学乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥117.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习算法之线性模型视频教学-机器学习学习
- 【点云识别】Learning to Segment 3D Point Clouds in 2D Image Space (CVPR 2020)
orientliu96
点云识别
LearningtoSegment3DPointCloudsin2DImageSpace本文介绍一篇cvpr2020里面关于点云部件分割的文章。论文代码1.问题相比于2DU-net的架构上,点云上的部件分割没有取得比较好的进展。所以这篇文章,将3D点云投影到2D空间上,再使用U-net的架构进行分割,取得的效果可谓是遥遥领先!2.思想整体流程就是以下三步Constructgraphsfrompoi
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name