FCN的车牌图像识别,end-to-end 目标定位、图像识别

FCN的车牌图像识别,end-to-end 目标定位、图像识别_第1张图片

上图,分割结果和识别结果都非常好!!!

一、样本与label制作:效果如下图:
这里写图片描述
这里写图片描述

这里写图片描述
这里写图片描述
分别一一对应:
FCN的车牌图像识别,end-to-end 目标定位、图像识别_第2张图片
FCN的车牌图像识别,end-to-end 目标定位、图像识别_第3张图片

Fully Convolutional Networks forSemantic Segmentation

1.概览&主要贡献
提出了一种end-to-end的做semantic segmentation的方法,简称FCN。
如下图所示,直接拿segmentation 的 ground truth作为监督信息,训练一个端到端的网络,让网络做pixelwise的prediction,直接预测label map。
FCN的车牌图像识别,end-to-end 目标定位、图像识别_第4张图片

2.问题&解决办法

1)如何做pixelwise的prediction?

传统的网络是subsampling的,对应的输出尺寸会降低,要想做pixelwiseprediction,必须保证输出尺寸。
解决办法:
(1)对传统网络如AlexNet,VGG等的最后全连接层变成卷积层。
FCN的车牌图像识别,end-to-end 目标定位、图像识别_第5张图片

例如VGG16中第一个全连接层是25088x4096的,将之解释为512x7x7x4096的卷积核,则如果在一个更大的输入图像上进行卷积操作(上图的下半部分),原来输出4096维feature的节点处(上图的上半部分),就会输出一个coarsefeature map。
这样做的好处是,能够很好的利用已经训练好的supervisedpre-training的网络,不用像已有的方法那样,从头到尾训练,只需要fine-tuning即可,训练efficient。
(2)加In-network upsampling layer。
对中间得到的featuremap做bilinear上采样,就是反卷积层。实现把conv的前传和反传过程对调一下即可。
2)如何refine,得到更好的结果?

upsampling中步长是32,输入为3x500x500的时候,输出是544x544,边缘很不好,并且limit thescale of detail of the upsampling output。
解决办法:
FCN的车牌图像识别,end-to-end 目标定位、图像识别_第6张图片

采用skiplayer的方法,在浅层处减小upsampling的步长,得到的finelayer 和 高层得到的coarselayer做融合,然后再upsampling得到输出。这种做法兼顾local和global信息,即文中说的combiningwhat and where,取得了不错的效果提升。FCN-32s为59.4,FCN-16s提升到了62.4,FCN-8s提升到62.7。可以看出效果还是很明显的。

3.训练细节

用AlexNet,VGG16或者GoogleNet训练好的模型做初始化,在这个基础上做fine-tuning,全部都fine-tuning。
采用wholeimage做训练,不进行patchwisesampling。实验证明直接用全图已经很effectiveand efficient。
对classscore的卷积层做全零初始化。随机初始化在性能和收敛上没有优势。
FCN的车牌图像识别,end-to-end 目标定位、图像识别_第7张图片

模型描述:

name: "FCN"

input: "data"
input_dim: 1
input_dim: 3
input_dim: 80
input_dim: 200
###########################################################
layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 24
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}
layer {
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2_1"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2_1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu2_1"
  type: "ReLU"
  bottom: "conv2_1"
  top: "conv2_1"
}
layer {
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2_1"
  top: "conv2_2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu2_2"
  type: "ReLU"
  bottom: "conv2_2"
  top: "conv2_2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2_2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3_1"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3_1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu3_1"
  type: "ReLU"
  bottom: "conv3_1"
  top: "conv3_1"
}
layer {
  name: "conv3_2"
  type: "Convolution"
  bottom: "conv3_1"
  top: "conv3_2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu3_2"
  type: "ReLU"
  bottom: "conv3_2"
  top: "conv3_2"
}
layer {
  name: "conv3_3"
  type: "Convolution"
  bottom: "conv3_2"
  top: "conv3_3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    engine: CAFFE
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu3_3"
  type: "ReLU"
  bottom: "conv3_3"
  top: "conv3_3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3_3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "score4"
  type: "Convolution"
  bottom: "pool3"
  top: "score4"
  param {
    lr_mult: 0.01
    decay_mult: 1
  }
  param {
    lr_mult: 0.02
    decay_mult: 0
  }
  convolution_param {
    num_output: 69
    kernel_size: 1
    engine: CAFFE
  }
}
layer {
  name: "upscore_new"
  type: "Deconvolution"
  bottom: "score4"
  top: "upscore_new"
  param {
    lr_mult: 0
  }
  convolution_param {
    num_output: 69
    bias_term: false
    kernel_size: 16
    stride: 8
  }
}
layer {
  type: "Crop"
  name: "score"
  top: "score"
  bottom: "upscore_new" 
  bottom: "data"
  crop_param{
    axis:2
    offset:19
    }
}
layer {
  type: "Softmax"
  name: "score1"
  top: "score1"
  bottom: "score" 
}

你可能感兴趣的:(字符识别OCR研究,FCN,全卷积,反卷积,Deconvolut,车牌识别)