class Frame
{
public:
Frame();
// Copy constructor.
//拷贝构造函数
Frame(const Frame &frame);
// Constructor for stereo cameras.
//双目构造函数
Frame(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timeStamp, ORBextractor* extractorLeft, ORBextractor* extractorRight, ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth);
// Constructor for RGB-D cameras.
//RGBD构造函数
Frame(const cv::Mat &imGray, const cv::Mat &imDepth, const double &timeStamp, ORBextractor* extractor,ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth);
// Constructor for Monocular cameras.
//针对单目的frame构造函数
//提取了orb特征点
Frame(const cv::Mat &imGray, const double &timeStamp, ORBextractor* extractor,ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth);
// Extract ORB on the image. 0 for left image and 1 for right image.
//提取图片的ORB,0为左图,1为右图
void ExtractORB(int flag, const cv::Mat &im);
// Compute Bag of Words representation.
void ComputeBoW();
// Set the camera pose.
void SetPose(cv::Mat Tcw);
// Computes rotation, translation and camera center matrices from the camera pose.
void UpdatePoseMatrices();
// Returns the camera center.
inline cv::Mat GetCameraCenter(){
return mOw.clone();
}
// Returns inverse of rotation
inline cv::Mat GetRotationInverse(){
return mRwc.clone();
}
// Check if a MapPoint is in the frustum of the camera
// and fill variables of the MapPoint to be used by the tracking
//pMP是否在当前帧视野范围内
bool isInFrustum(MapPoint* pMP, float viewingCosLimit);
// Compute the cell of a keypoint (return false if outside the grid)
//计算kp在哪一个窗格,如果超出边界则返回false
bool PosInGrid(const cv::KeyPoint &kp, int &posX, int &posY);
/**
* 找到在 以x, y为中心,边长为2r的方形搜索框内且在[minLevel, maxLevel]的特征点
* @param x 图像坐标u
* @param y 图像坐标v
* @param r 边长
* @param minLevel 最小尺度
* @param maxLevel 最大尺度
* @return 满足条件的特征点的序号
*/
vector<size_t> GetFeaturesInArea(const float &x, const float &y, const float &r, const int minLevel=-1, const int maxLevel=-1) const;
// Search a match for each keypoint in the left image to a keypoint in the right image.
// If there is a match, depth is computed and the right coordinate associated to the left keypoint is stored.
void ComputeStereoMatches();
// Associate a "right" coordinate to a keypoint if there is valid depth in the depthmap.
void ComputeStereoFromRGBD(const cv::Mat &imDepth);
// Backprojects a keypoint (if stereo/depth info available) into 3D world coordinates.
cv::Mat UnprojectStereo(const int &i);
public:
// Vocabulary used for relocalization.
ORBVocabulary* mpORBvocabulary;
// Feature extractor. The right is used only in the stereo case.
ORBextractor* mpORBextractorLeft, *mpORBextractorRight;
// Frame timestamp.
double mTimeStamp;
// Calibration matrix and OpenCV distortion parameters.
cv::Mat mK;
static float fx;
static float fy;
static float cx;
static float cy;
static float invfx;
static float invfy;
cv::Mat mDistCoef;
// Stereo baseline multiplied by fx.
float mbf;
// Stereo baseline in meters.
float mb;
// Threshold close/far points. Close points are inserted from 1 view.
// Far points are inserted as in the monocular case from 2 views.
float mThDepth;
// Number of KeyPoints.
int N;
// Vector of keypoints (original for visualization) and undistorted (actually used by the system).
// In the stereo case, mvKeysUn is redundant as images must be rectified.
// In the RGB-D case, RGB images can be distorted.
//畸变的orb关键点
std::vector<cv::KeyPoint> mvKeys, mvKeysRight;
//纠正后的关键点
std::vector<cv::KeyPoint> mvKeysUn;
// Corresponding stereo coordinate and depth for each keypoint.
// "Monocular" keypoints have a negative value.
std::vector<float> mvuRight;
std::vector<float> mvDepth;
// Bag of Words Vector structures.
//mBowVec本质是一个map
//对于某幅图像A,它的特征点可以对应多个单词,组成它的bow
DBoW2::BowVector mBowVec;
//mFeatVec是一个std::map >
//将此帧的特征点分配到mpORBVocabulary树各个结点,从而得到mFeatVec
//mFeatVec->first代表结点ID
//mFeatVec->second代表在mFeatVec->first结点的特征点序号的vector集合
DBoW2::FeatureVector mFeatVec;
// ORB descriptor, each row associated to a keypoint.
//orb描述子
cv::Mat mDescriptors, mDescriptorsRight;
// MapPoints associated to keypoints, NULL pointer if no association.
//大小是mvKeys大小,表示mappoint和此帧特征点的联系。如果没有联系则为NULL
std::vector<MapPoint*> mvpMapPoints;
// Flag to identify outlier associations.
//描述比如经过位姿优化后,有哪些特征点是可以匹配上mappoint的,
//一般情况下他和mvpMapPoints描述的情况相同。它比mvpMapPoints时效性更强
std::vector<bool> mvbOutlier;
// Keypoints are assigned to cells in a grid to reduce matching complexity when projecting MapPoints.
//x轴窗格宽倒数
static float mfGridElementWidthInv;
//y轴窗格高倒数
static float mfGridElementHeightInv;
//储存这各个窗格的特征点在mvKeysUn中的序号
std::vector<std::size_t> mGrid[FRAME_GRID_COLS][FRAME_GRID_ROWS];
// Camera pose.
cv::Mat mTcw;
// Current and Next Frame id.
//静态变量,下一个Frame对象id
static long unsigned int nNextId;
//当前Frame对象id
long unsigned int mnId;
// Reference Keyframe.
//参考关键帧,有共视的mappoint关键帧共视程度最高(共视的mappoint数量最多)的关键帧
KeyFrame* mpReferenceKF;
// Scale pyramid info.
//从orbextractor拷贝的关于高斯金字塔的信息
//高斯金字塔层数
int mnScaleLevels;
float mfScaleFactor;
float mfLogScaleFactor;
vector<float> mvScaleFactors;
vector<float> mvInvScaleFactors;
vector<float> mvLevelSigma2;
vector<float> mvInvLevelSigma2;
// Undistorted Image Bounds (computed once).
static float mnMinX;
static float mnMaxX;
static float mnMinY;
static float mnMaxY;
static bool mbInitialComputations;
private:
// Undistort keypoints given OpenCV distortion parameters.
// Only for the RGB-D case. Stereo must be already rectified!
// (called in the constructor).
//关键点畸变矫正
void UndistortKeyPoints();
// Computes image bounds for the undistorted image (called in the constructor).
void ComputeImageBounds(const cv::Mat &imLeft);
// Assign keypoints to the grid for speed up feature matching (called in the constructor).
void AssignFeaturesToGrid();
// Rotation, translation and camera center
cv::Mat mRcw;
cv::Mat mtcw;
cv::Mat mRwc;
//关心在世界坐标系中位姿
cv::Mat mOw; //==mtwc
};
bool Frame:: isInFrustum(MapPoint *pMP, float viewingCosLimit)
{
pMP->mbTrackInView = false;
// 3D in absolute coordinates
cv::Mat P = pMP->GetWorldPos();
// 3D in camera coordinates
const cv::Mat Pc = mRcw*P+mtcw;
const float &PcX = Pc.at<float>(0);
const float &PcY= Pc.at<float>(1);
const float &PcZ = Pc.at<float>(2);
// Check positive depth
//如果z值为负,舍弃
if(PcZ<0.0f)
return false;
// Project in image and check it is not outside
const float invz = 1.0f/PcZ;
const float u=fx*PcX*invz+cx;
const float v=fy*PcY*invz+cy;
//
if(u<mnMinX || u>mnMaxX)
return false;
if(v<mnMinY || v>mnMaxY)
return false;
// Check distance is in the scale invariance region of the MapPoint
const float maxDistance = pMP->GetMaxDistanceInvariance();
const float minDistance = pMP->GetMinDistanceInvariance();
const cv::Mat PO = P-mOw;
const float dist = cv::norm(PO);
if(dist<minDistance || dist>maxDistance)
return false;
// Check viewing angle
//检查观测角是否在阈值以内
cv::Mat Pn = pMP->GetNormal();
//观测角的cos值
const float viewCos = PO.dot(Pn)/dist;
if(viewCos<viewingCosLimit)
return false;
// Predict scale in the image
const int nPredictedLevel = pMP->PredictScale(dist,this);
// Data used by the tracking
pMP->mbTrackInView = true;
pMP->mTrackProjX = u;
pMP->mTrackProjXR = u - mbf*invz;
pMP->mTrackProjY = v;
pMP->mnTrackScaleLevel= nPredictedLevel;
pMP->mTrackViewCos = viewCos;
return true;
}
计算kp在哪一个窗格,如果超出边界则返回false
bool Frame::PosInGrid(const cv::KeyPoint &kp, int &posX, int &posY)
{
posX = round((kp.pt.x-mnMinX)*mfGridElementWidthInv);
posY = round((kp.pt.y-mnMinY)*mfGridElementHeightInv);
//Keypoint's coordinates are undistorted, which could cause to go out of the image
if(posX<0 || posX>=FRAME_GRID_COLS || posY<0 || posY>=FRAME_GRID_ROWS)
return false;
return true;
}
/**
* 找到在 以x, y为中心,边长为2r的方形搜索框内且在[minLevel, maxLevel]的特征点
* @param x 图像坐标u
* @param y 图像坐标v
* @param r 边长
* @param minLevel 最小尺度
* @param maxLevel 最大尺度
* @return 满足条件的特征点的序号
*/
vector<size_t> Frame::GetFeaturesInArea(const float &x, const float &y, const float &r, const int minLevel, const int maxLevel) const
{
vector<size_t> vIndices;
vIndices.reserve(N);
//接下来计算方形的四边在哪在mGrid中的行数和列数
//nMinCellX是方形左边在mGrid中的列数,如果它比mGrid的列数大,说明方形内肯定没有特征点,于是返回
const int nMinCellX = max(0,(int)floor((x-mnMinX-r)*mfGridElementWidthInv));
if(nMinCellX>=FRAME_GRID_COLS)
return vIndices;
const int nMaxCellX = min((int)FRAME_GRID_COLS-1,(int)ceil((x-mnMinX+r)*mfGridElementWidthInv));
if(nMaxCellX<0)
return vIndices;
const int nMinCellY = max(0,(int)floor((y-mnMinY-r)*mfGridElementHeightInv));
if(nMinCellY>=FRAME_GRID_ROWS)
return vIndices;
const int nMaxCellY = min((int)FRAME_GRID_ROWS-1,(int)ceil((y-mnMinY+r)*mfGridElementHeightInv));
if(nMaxCellY<0)
return vIndices;
const bool bCheckLevels = (minLevel>0) || (maxLevel>=0);
for(int ix = nMinCellX; ix<=nMaxCellX; ix++)
{
for(int iy = nMinCellY; iy<=nMaxCellY; iy++)
{
const vector<size_t> vCell = mGrid[ix][iy];
if(vCell.empty())
continue;
for(size_t j=0, jend=vCell.size(); j<jend; j++)
{
const cv::KeyPoint &kpUn = mvKeysUn[vCell[j]];
if(bCheckLevels)
{
if(kpUn.octave<minLevel)
continue;
if(maxLevel>=0)
if(kpUn.octave>maxLevel)
continue;
}
//确认此特征点在方形内
const float distx = kpUn.pt.x-x;
const float disty = kpUn.pt.y-y;
if(fabs(distx)<r && fabs(disty)<r)
vIndices.push_back(vCell[j]);
}
}
}
return vIndices;
}