本文记录了ORB_SLAM2中地图保存与加载的过程。
参考博客:
https://blog.csdn.net/qq_34254510/article/details/79969046
http://www.cnblogs.com/mafuqiang/p/6972841.html
https://blog.csdn.net/felaim/article/details/79667635
地图保存过程比较简单,只需要按照参考一步步修改源码即可。接下来我们一起来走一遍这个过程。
所谓地图保存,就是保存地图“Map”中的各个元素,以及它们之间的关系,凡是跟踪过程中需要用到的东西自然也就是需要保存的对象。地图主要包含关键帧、3D地图点、BoW向量、共视图、生长树等,在跟踪过程中有三种跟踪模型和局部地图跟踪等过程,局部地图跟踪需要用到3D地图点、共视关系等元素,参考帧模型需要用到关键帧的BoW向量,重定位需要用到BoW向量、3D点等。所以基本上述元素都需要保存。
另一方面,关键帧也是一个抽象的概念(一个类),我们看看具体包含什么(其实都在关键帧类里面了),关键帧是从普通帧来的,所以来了视频帧首先需要做的就是检测特征点,计算描述符,还有当前帧的相机位姿,作为关键帧之后需要有对应的ID编号,以及特征点进行三角化之后的3D地图点等。
关于3D地图点需要保存的就只有世界坐标了,至于其它的关联关系可以重关键帧获得。需要单独说的是在关键帧类中包含了特征点和描述符,所以BoW向量是不需要保存的(也没办法保存),只需要在加载了关键帧之后利用特征描述符重新计算即可。
所以现在需要保存的东西包括关键帧、3D地图点、共视图、生长树。
SLAM对地图维护的操作均在Map.cc这个函数类中,所以要保存地图,我们需要在这个文件中添加相应代码。
在Map.h文件中的Map类中添加如下函数:
public:
//保存地图信息
void Save(const string &filename);
protected:
//保存地图点和关键帧
void SaveMapPoint(ofstream &f,MapPoint* mp);
void SaveKeyFrame(ofstream &f,KeyFrame* kf);
在Map.cc文件中添加第一步中函数的实现。
Save()函数的实现过程:
//保存地图信息
void Map::Save ( const string& filename )
{
//Print the information of the saving map
cerr<<"Map.cc :: Map Saving to "<mnId << endl;
}
//Print The number of MapPoints
cerr << "Map.cc :: The number of MapPoints is :"<GetParent();
unsigned long int parent_id = ULONG_MAX;
if ( parent )
parent_id = parent->mnId;
f.write((char*)&parent_id, sizeof(parent_id));
//Get the size of the Connected KeyFrames of the current KeyFrames
//and then save the ID and weight of the Connected KeyFrames
unsigned long int nb_con = kf->GetConnectedKeyFrames().size();
f.write((char*)&nb_con, sizeof(nb_con));
for ( auto ckf: kf->GetConnectedKeyFrames())
{
int weight = kf->GetWeight(ckf);
f.write((char*)&ckf->mnId, sizeof(ckf->mnId));
f.write((char*)&weight, sizeof(weight));
}
}
// Save last Frame ID
// SaveFrameID(f);
f.close();
cerr<<"Map.cc :: Map Saving Finished!"<
存储地图点函数——SaveMapPoint()函数的实现:
void Map::SaveMapPoint( ofstream& f, MapPoint* mp)
{
//Save ID and the x,y,z coordinates of the current MapPoint
f.write((char*)&mp->mnId, sizeof(mp->mnId));
cv::Mat mpWorldPos = mp->GetWorldPos();
f.write((char*)& mpWorldPos.at(0),sizeof(float));
f.write((char*)& mpWorldPos.at(1),sizeof(float));
f.write((char*)& mpWorldPos.at(2),sizeof(float));
}
存储关键帧函数——SaveKeyFrame()函数的实现:
void Map::SaveKeyFrame( ofstream &f, KeyFrame* kf )
{
//Save the ID and timesteps of current KeyFrame
f.write((char*)&kf->mnId, sizeof(kf->mnId));
// cout << "saving kf->mnId = " << kf->mnId <mTimeStamp, sizeof(kf->mTimeStamp));
//Save the Pose Matrix of current KeyFrame
cv::Mat Tcw = kf->GetPose();
////Save the rotation matrix
// for ( int i = 0; i < Tcw.rows; i ++ )
// {
// for ( int j = 0; j < Tcw.cols; j ++ )
// {
// f.write((char*)&Tcw.at(i,j), sizeof(float));
// //cerr<<"Tcw.at("<(i,j)< Quat = Converter::toQuaternion(Tcw);
for ( int i = 0; i < 4; i ++ )
f.write((char*)&Quat[i],sizeof(float));
//Save the translation matrix
for ( int i = 0; i < 3; i ++ )
f.write((char*)&Tcw.at(i,3),sizeof(float));
//Save the size of the ORB features current KeyFrame
//cerr<<"kf->N:"<N<N, sizeof(kf->N));
//Save each ORB features
for( int i = 0; i < kf->N; i ++ )
{
cv::KeyPoint kp = kf->mvKeys[i];
f.write((char*)&kp.pt.x, sizeof(kp.pt.x));
f.write((char*)&kp.pt.y, sizeof(kp.pt.y));
f.write((char*)&kp.size, sizeof(kp.size));
f.write((char*)&kp.angle,sizeof(kp.angle));
f.write((char*)&kp.response, sizeof(kp.response));
f.write((char*)&kp.octave, sizeof(kp.octave));
//Save the Descriptors of current ORB features
f.write((char*)&kf->mDescriptors.cols, sizeof(kf->mDescriptors.cols)); //kf->mDescriptors.cols is always 32 here.
for (int j = 0; j < kf->mDescriptors.cols; j ++ )
f.write((char*)&kf->mDescriptors.at(i,j), sizeof(char));
//Save the index of MapPoints that corresponds to current ORB features
unsigned long int mnIdx;
MapPoint* mp = kf->GetMapPoint(i);
if (mp == NULL )
mnIdx = ULONG_MAX;
else
mnIdx = mmpnMapPointsIdx[mp];
f.write((char*)&mnIdx, sizeof(mnIdx));
}
// Save BoW for relocalization.
// f.write((char*)&kf->mBowVec, sizeof(kf->mBowVec));
}
Save()函数中的GetMapPointsIdx()函数用于获取地图点的ID号,所以需要在Map.h中定义如下成员变量:
std::map mmpnMapPointsIdx;
GetMapPointsIdx()函数的实现过程为(在Map.cc文件中添加):
void Map::GetMapPointsIdx()
{
unique_lock lock(mMutexMap);
unsigned long int i = 0;
for ( auto mp: mspMapPoints )
{
mmpnMapPointsIdx[mp] = i;
i += 1;
}
}
关于旋转矩阵的存储可以通过四元数或矩阵的形式存储,如果使用四元数需要自定义一个矩阵和四元数相互转换的函数,在Converter.cc类里面添加如下函数:
cv::Mat Converter::toCvMat(const std::vector& v)
{
Eigen::Quaterniond q;
q.x() = v[0];
q.y() = v[1];
q.z() = v[2];
q.w() = v[3];
Eigen::Matrix eigMat(q);
cv::Mat M = toCvMat(eigMat);
return M;
}
上述修改完成之后,还需要对system.h和system.cc文件进行修改,分别添加声明和定义。
system.h文件:
void SaveMap(const string &filename);
system.cc文件
//地图保存
void System::SaveMap(const string &filename)
{
mpMap->Save(filename);
}
做完这些修改之后,在Examples文件中对应的示例程序中加入地图存储代码即可实现地图存储功能。
如在stereo_kitti.cc文件中加入如下语句:
//SLAM.SaveMap("/home/ORB_SLAM2/Examples/Stereo/map.bin");
地图加载相当于地图保存的逆过程,但是实际操作要相对麻烦一点。
地图加载部分需要修改的较多,所以按所需修改的文件来进行说明。
在Map.h文件中声明地图加载函数、地图点加载函数和关键帧加载函数:
//加载地图信息
void Load(const string &filename,SystemSetting* mySystemSetting);
MapPoint* LoadMapPoint(ifstream &f);
KeyFrame* LoadKeyFrame(ifstream &f,SystemSetting* mySystemSetting);
在Map.cc文件中进行相应实现:
地图加载函数
//地图加载函数
void Map::Load ( const string &filename, SystemSetting* mySystemSetting)
{
cerr << "Map.cc :: Map reading from:"< vmp = GetAllMapPoints();
// Read the number of KeyFrames
unsigned long int nKeyFrames;
f.read((char*)&nKeyFrames, sizeof(nKeyFrames));
cerr<<"Map.cc :: The number of KeyFrames:"<kf_by_order;
for( unsigned int i = 0; i < nKeyFrames; i ++ )
{
KeyFrame* kf = LoadKeyFrame(f, mySystemSetting);
AddKeyFrame(kf);
kf_by_order.push_back(kf);
}
cerr<<"Map.cc :: Max KeyFrame ID is: " << mnMaxKFid << ", and I set mnId to this number" < kf_by_id;
for ( auto kf: mspKeyFrames )
kf_by_id[kf->mnId] = kf;
cerr<<"Map.cc :: Start Load The Parent!"<ChangeParent(kf_by_id[parent_id]);
// Read covisibility graphs.
// Read the number of Connected KeyFrames of current KeyFrame.
unsigned long int nb_con;
f.read((char*)&nb_con, sizeof(nb_con));
// Read id and weight of Connected KeyFrames of current KeyFrame,
// and add Connected KeyFrames into covisibility graph.
// cout<<"Map::Load : Read id and weight of Connected KeyFrames"<AddConnection(kf_by_id[id],weight);
}
}
cerr<<"Map.cc :: Parent Load OVER!"<UpdateNormalAndDepth();
// cout << "Updated Normal And Depth." << endl;
}
}
f.close();
cerr<<"Map.cc :: Load IS OVER!"<
地图点加载函数:
MapPoint* Map::LoadMapPoint( ifstream &f )
{
// Position and Orientation of the MapPoints.
cv::Mat Position(3,1,CV_32F);
long unsigned int id;
f.read((char*)&id, sizeof(id));
f.read((char*)&Position.at(0), sizeof(float));
f.read((char*)&Position.at(1), sizeof(float));
f.read((char*)&Position.at(2), sizeof(float));
// Initialize a MapPoint, and set its id and Position.
MapPoint* mp = new MapPoint(Position, this );
mp->mnId = id;
mp->SetWorldPos( Position );
return mp;
}
关键帧加载函数:
KeyFrame* Map::LoadKeyFrame( ifstream &f, SystemSetting* mySystemSetting )
{
InitKeyFrame initkf(*mySystemSetting);
// Read ID and TimeStamp of each KeyFrame.
f.read((char*)&initkf.nId, sizeof(initkf.nId));
f.read((char*)&initkf.TimeStamp, sizeof(double));
// Read position and quaternion
cv::Mat T = cv::Mat::zeros(4,4,CV_32F);
std::vector Quat(4);
//Quat.reserve(4);
for ( int i = 0; i < 4; i ++ )
f.read((char*)&Quat[i],sizeof(float));
cv::Mat R = Converter::toCvMat(Quat);
for ( int i = 0; i < 3; i ++ )
f.read((char*)&T.at(i,3),sizeof(float));
for ( int i = 0; i < 3; i ++ )
for ( int j = 0; j < 3; j ++ )
T.at(i,j) = R.at(i,j);
T.at(3,3) = 1;
// Read feature point number of current Key Frame
f.read((char*)&initkf.N, sizeof(initkf.N));
initkf.vKps.reserve(initkf.N);
initkf.Descriptors.create(initkf.N, 32, CV_8UC1);
vectorKeypointDepth;
std::vector vpMapPoints;
vpMapPoints = vector(initkf.N,static_cast(NULL));
// Read Keypoints and descriptors of current KeyFrame
std::vector vmp = GetAllMapPoints();
for(int i = 0; i < initkf.N; i ++ )
{
cv::KeyPoint kp;
f.read((char*)&kp.pt.x, sizeof(kp.pt.x));
f.read((char*)&kp.pt.y, sizeof(kp.pt.y));
f.read((char*)&kp.size, sizeof(kp.size));
f.read((char*)&kp.angle,sizeof(kp.angle));
f.read((char*)&kp.response, sizeof(kp.response));
f.read((char*)&kp.octave, sizeof(kp.octave));
initkf.vKps.push_back(kp);
// Read descriptors of keypoints
f.read((char*)&initkf.Descriptors.cols, sizeof(initkf.Descriptors.cols));
// for ( int j = 0; j < 32; j ++ ) // Since initkf.Descriptors.cols is always 32, for loop may also write like this.
for ( int j = 0; j < initkf.Descriptors.cols; j ++ )
f.read((char*)&initkf.Descriptors.at(i,j),sizeof(char));
// Read the mapping from keypoints to MapPoints.
unsigned long int mpidx;
f.read((char*)&mpidx, sizeof(mpidx));
// Look up from vmp, which contains all MapPoints, MapPoint of current KeyFrame, and then insert in vpMapPoints.
if( mpidx == ULONG_MAX )
vpMapPoints[i] = NULL;
else
vpMapPoints[i] = vmp[mpidx];
}
initkf.vRight = vector(initkf.N,-1);
initkf.vDepth = vector(initkf.N,-1);
//initkf.vDepth = KeypointDepth;
initkf.UndistortKeyPoints();
initkf.AssignFeaturesToGrid();
// Use initkf to initialize a KeyFrame and set parameters
KeyFrame* kf = new KeyFrame( initkf, this, NULL, vpMapPoints );
kf->mnId = initkf.nId;
kf->SetPose(T);
kf->ComputeBoW();
for ( int i = 0; i < initkf.N; i ++ )
{
if ( vpMapPoints[i] )
{
vpMapPoints[i]->AddObservation(kf,i);
if( !vpMapPoints[i]->GetReferenceKeyFrame())
vpMapPoints[i]->SetReferenceKeyFrame(kf);
}
}
return kf;
}
由于在加载地图时我们只有Position以及当前的Map,所以需要重新定义一种MapPoint类的构造函数以满足要求。
在MapPoint.h文件中添加如下构造函数:
MapPoint(const cv::Mat &Pos,Map* pMap);
在MapPoint.cc文件中实现该构造函数:
MapPoint::MapPoint(const cv::Mat &Pos,Map* pMap):
mnFirstKFid(0), mnFirstFrame(0), nObs(0), mnTrackReferenceForFrame(0), mnLastFrameSeen(0), mnBALocalForKF(0), mnFuseCandidateForKF(0), mnLoopPointForKF(0), mnCorrectedByKF(0),
mnCorrectedReference(0), mnBAGlobalForKF(0), mpRefKF(static_cast(NULL)), mnVisible(1), mnFound(1), mbBad(false),
mpReplaced(static_cast(NULL)), mfMinDistance(0), mfMaxDistance(0), mpMap(pMap)
{
Pos.copyTo(mWorldPos);
mNormalVector = cv::Mat::zeros(3,1,CV_32F);
unique_lock lock(mpMap->mMutexPointCreation);
mnId = nNextId++;
}
此外,还需要添加如下函数:
KeyFrame* SetReferenceKeyFrame(KeyFrame* RFKF);
KeyFrame* MapPoint::SetReferenceKeyFrame(KeyFrame* RFKF)
{
return mpRefKF = RFKF;
}
与MapPoint文件相同,KeyFrame文件也要做相关修改。
在KeyFrame.h文件中添加如下构造函数:
KeyFrame(InitKeyFrame &initkf,Map* pMap,KeyFrameDatabase* pKFDB,vector& vpMapPoints);
在KeyFrame.cc文件中实现该构造函数:
KeyFrame::KeyFrame(InitKeyFrame &initkf, Map *pMap, KeyFrameDatabase *pKFDB, vector &vpMapPoints):
mnFrameId(0), mTimeStamp(initkf.TimeStamp), mnGridCols(FRAME_GRID_COLS), mnGridRows(FRAME_GRID_ROWS),
mfGridElementWidthInv(initkf.fGridElementWidthInv), mfGridElementHeightInv(initkf.fGridElementHeightInv),
mnTrackReferenceForFrame(0), mnFuseTargetForKF(0), mnBALocalForKF(0), mnBAFixedForKF(0),
mnLoopQuery(0), mnLoopWords(0), mnRelocQuery(0), mnRelocWords(0), mnBAGlobalForKF(0),
fx(initkf.fx), fy(initkf.fy), cx(initkf.cx), cy(initkf.cy), invfx(initkf.invfx),
invfy(initkf.invfy), mbf(initkf.bf), mb(initkf.b), mThDepth(initkf.ThDepth), N(initkf.N),
mvKeys(initkf.vKps), mvKeysUn(initkf.vKpsUn), mvuRight(initkf.vRight), mvDepth(initkf.vDepth),
mDescriptors(initkf.Descriptors.clone()), mBowVec(initkf.BowVec), mFeatVec(initkf.FeatVec),
mnScaleLevels(initkf.nScaleLevels), mfScaleFactor(initkf.fScaleFactor), mfLogScaleFactor(initkf.fLogScaleFactor),
mvScaleFactors(initkf.vScaleFactors), mvLevelSigma2(initkf.vLevelSigma2),mvInvLevelSigma2(initkf.vInvLevelSigma2),
mnMinX(initkf.nMinX), mnMinY(initkf.nMinY), mnMaxX(initkf.nMaxX), mnMaxY(initkf.nMaxY), mK(initkf.K),
mvpMapPoints(vpMapPoints), mpKeyFrameDB(pKFDB), mpORBvocabulary(initkf.pVocabulary),
mbFirstConnection(true), mpParent(NULL), mbNotErase(false), mbToBeErased(false), mbBad(false),
mHalfBaseline(initkf.b/2), mpMap(pMap)
{
mnId = nNextId ++;
}
不要忘记在KeyFrame.h中添加相应头文件和命名空间中的类声明
在上面的函数中我们用到了SystemSetting类和InitKeyFrame类。其中SystemSetting类用于读取参数文件中的相关参数,InitKeyFrame类用于进行关键帧初始化。其实现过程如下:
SystemSetting.h
#ifndef SYSTEMSETTING_H
#define SYSTEMSETTING_H
#include
#include"ORBVocabulary.h"
#include
namespace ORB_SLAM2 {
class SystemSetting{
public:
SystemSetting(ORBVocabulary* pVoc);
bool LoadSystemSetting(const std::string strSettingPath);
public:
ORBVocabulary* pVocavulary;
//相机参数
float width;
float height;
float fx;
float fy;
float cx;
float cy;
float invfx;
float invfy;
float bf;
float b;
float fps;
cv::Mat K;
cv::Mat DistCoef;
bool initialized;
//相机 RGB 参数
int nRGB;
//ORB特征参数
int nFeatures;
float fScaleFactor;
int nLevels;
float fIniThFAST;
float fMinThFAST;
//其他参数
float ThDepth = -1;
float DepthMapFactor = -1;
};
}//namespace ORB_SLAM2
#endif //SystemSetting
SystemSetting.cc的函数具体实现:
#include
#include"SystemSetting.h"
using namespace std;
namespace ORB_SLAM2 {
SystemSetting::SystemSetting(ORBVocabulary* pVoc):pVocavulary(pVoc)
{
}
bool SystemSetting::LoadSystemSetting(const std::string strSettingPath)
{
cout<(0,0) = fx;
tmpK.at(1,1) = fy;
tmpK.at(0,2) = cx;
tmpK.at(1,2) = cy;
tmpK.copyTo(K);
cv::Mat tmpDistCoef(4,1,CV_32F);
tmpDistCoef.at(0) = fSettings["Camera.k1"];
tmpDistCoef.at(1) = fSettings["Camera.k2"];
tmpDistCoef.at(2) = fSettings["Camera.p1"];
tmpDistCoef.at(3) = fSettings["Camera.p2"];
const float k3 = fSettings["Camera.k3"];
if( k3!=0 )
{
tmpDistCoef.resize(5);
tmpDistCoef.at(4) = k3;
}
tmpDistCoef.copyTo( DistCoef );
bf = fSettings["Camera.bf"];
fps= fSettings["Camera.fps"];
invfx = 1.0f/fx;
invfy = 1.0f/fy;
b = bf /fx;
initialized = true;
cout<<"- size:"<(0) << endl;
cout << "- k2: " << DistCoef.at(1) << endl;
if(DistCoef.rows==5)
cout << "- k3: " << DistCoef.at(4) << endl;
cout << "- p1: " << DistCoef.at(2) << endl;
cout << "- p2: " << DistCoef.at(3) << endl;
cout << "- bf: " << bf << endl;
//Load RGB parameter
nRGB = fSettings["Camera.RGB"];
//Load ORB feature parameters
nFeatures = fSettings["ORBextractor.nFeatures"];
fScaleFactor = fSettings["ORBextractor.scaleFactor"];
nLevels = fSettings["ORBextractor.nLevels"];
fIniThFAST = fSettings["ORBextractor.iniThFAST"];
fMinThFAST = fSettings["ORBextractor.minThFAST"];
cout << endl << "ORB Extractor Parameters: " << endl;
cout << "- Number of Features: " << nFeatures << endl;
cout << "- Scale Levels: " << nLevels << endl;
cout << "- Scale Factor: " << fScaleFactor << endl;
cout << "- Initial Fast Threshold: " << fIniThFAST << endl;
cout << "- Minimum Fast Threshold: " << fMinThFAST << endl;
//Load others parameters, if the sensor is MONOCULAR, the parameters is zero;
//ThDepth = fSettings["ThDepth"];
//DepthMapFactor = fSettings["DepthMapFactor"];
fSettings.release();
return true;
}
}
InitKeyFrame.h文件
#ifndef INITKEYFRAME_H
#define INITKEYFRAME_H
#include "Thirdparty/DBoW2/DBoW2/BowVector.h"
#include "Thirdparty/DBoW2/DBoW2/FeatureVector.h"
#include "SystemSetting.h"
#include
#include "ORBVocabulary.h"
#include "KeyFrameDatabase.h"
//#include "MapPoints.h"
namespace ORB_SLAM2
{
#define FRAME_GRID_ROWS 48
#define FRAME_GRID_COLS 64
class SystemSetting;
class KeyFrameDatabase;
//class ORBVocabulary;
class InitKeyFrame
{
public:
InitKeyFrame(SystemSetting &SS);
void UndistortKeyPoints();
bool PosInGrid(const cv::KeyPoint& kp, int &posX, int &posY);
void AssignFeaturesToGrid();
public:
ORBVocabulary* pVocabulary;
//KeyFrameDatabase* pKeyFrameDatabase;
long unsigned int nId;
double TimeStamp;
float fGridElementWidthInv;
float fGridElementHeightInv;
std::vector vGrid[FRAME_GRID_COLS][FRAME_GRID_ROWS];
float fx;
float fy;
float cx;
float cy;
float invfx;
float invfy;
float bf;
float b;
float ThDepth;
int N;
std::vector vKps;
std::vector vKpsUn;
cv::Mat Descriptors;
//it's zero for mono
std::vector vRight;
std::vector vDepth;
DBoW2::BowVector BowVec;
DBoW2::FeatureVector FeatVec;
int nScaleLevels;
float fScaleFactor;
float fLogScaleFactor;
std::vector vScaleFactors;
std::vector vLevelSigma2;
std::vector vInvLevelSigma2;
std::vector vInvScaleFactors;
int nMinX;
int nMinY;
int nMaxX;
int nMaxY;
cv::Mat K;
cv::Mat DistCoef;
};
} //namespace ORB_SLAM2
#endif //INITKEYFRAME_H
InitKeyFrame.cc的函数具体实现:
#include "InitKeyFrame.h"
#include
#include "SystemSetting.h"
namespace ORB_SLAM2
{
InitKeyFrame::InitKeyFrame(SystemSetting &SS):pVocabulary(SS.pVocavulary)//, pKeyFrameDatabase(SS.pKeyFrameDatabase)
{
fx = SS.fx;
fy = SS.fy;
cx = SS.cx;
cy = SS.cy;
invfx = SS.invfx;
invfy = SS.invfy;
bf = SS.bf;
b = SS.b;
ThDepth = SS.ThDepth;
nScaleLevels = SS.nLevels;
fScaleFactor = SS.fScaleFactor;
fLogScaleFactor = log(SS.fScaleFactor);
vScaleFactors.resize(nScaleLevels);
vLevelSigma2.resize(nScaleLevels);
vScaleFactors[0] = 1.0f;
vLevelSigma2[0] = 1.0f;
for ( int i = 1; i < nScaleLevels; i ++ )
{
vScaleFactors[i] = vScaleFactors[i-1]*fScaleFactor;
vLevelSigma2[i] = vScaleFactors[i]*vScaleFactors[i];
}
vInvScaleFactors.resize(nScaleLevels);
vInvLevelSigma2.resize(nScaleLevels);
for ( int i = 0; i < nScaleLevels; i ++ )
{
vInvScaleFactors[i] = 1.0f/vScaleFactors[i];
vInvLevelSigma2[i] = 1.0f/vLevelSigma2[i];
}
K = SS.K;
DistCoef = SS.DistCoef;
if( SS.DistCoef.at(0)!=0.0)
{
cv::Mat mat(4,2,CV_32F);
mat.at(0,0) = 0.0;
mat.at(0,1) = 0.0;
mat.at(1,0) = SS.width;
mat.at(1,1) = 0.0;
mat.at(2,0) = 0.0;
mat.at(2,1) = SS.height;
mat.at(3,0) = SS.width;
mat.at(3,1) = SS.height;
mat = mat.reshape(2);
cv::undistortPoints(mat, mat, SS.K, SS.DistCoef, cv::Mat(), SS.K);
mat = mat.reshape(1);
nMinX = min(mat.at(0,0), mat.at(2,0));
nMaxX = max(mat.at(1,0), mat.at(3,0));
nMinY = min(mat.at(0,1), mat.at(1,1));
nMaxY = max(mat.at(2,1), mat.at(3,1));
}
else
{
nMinX = 0.0f;
nMaxX = SS.width;
nMinY = 0.0f;
nMaxY = SS.height;
}
fGridElementWidthInv=static_cast(FRAME_GRID_COLS)/(nMaxX-nMinX);
fGridElementHeightInv=static_cast(FRAME_GRID_ROWS)/(nMaxY-nMinY);
}
void InitKeyFrame::UndistortKeyPoints()
{
if( DistCoef.at(0) == 0.0)
{
vKpsUn = vKps;
return;
}
cv::Mat mat(N,2,CV_32F);
for ( int i = 0; i < N; i ++ )
{
mat.at(i,0) = vKps[i].pt.x;
mat.at(i,1) = vKps[i].pt.y;
}
mat = mat.reshape(2);
cv::undistortPoints(mat, mat, K, DistCoef, cv::Mat(), K );
mat = mat.reshape(1);
vKpsUn.resize(N);
for( int i = 0; i < N; i ++ )
{
cv::KeyPoint kp = vKps[i];
kp.pt.x = mat.at(i,0);
kp.pt.y = mat.at(i,1);
vKpsUn[i] = kp;
}
}
void InitKeyFrame::AssignFeaturesToGrid()
{
int nReserve = 0.5f*N/(FRAME_GRID_COLS*FRAME_GRID_ROWS);
for ( unsigned int i = 0; i < FRAME_GRID_COLS; i ++ )
{
for ( unsigned int j = 0; j < FRAME_GRID_ROWS; j ++)
vGrid[i][j].reserve(nReserve);
}
for ( int i = 0; i < N; i ++ )
{
const cv::KeyPoint& kp = vKpsUn[i];
int nGridPosX, nGridPosY;
if( PosInGrid(kp, nGridPosX, nGridPosY))
vGrid[nGridPosX][nGridPosY].push_back(i);
}
}
bool InitKeyFrame::PosInGrid(const cv::KeyPoint &kp, int &posX, int &posY)
{
posX = round((kp.pt.x-nMinX)*fGridElementWidthInv);
posY = round((kp.pt.y-nMinY)*fGridElementHeightInv);
if(posX<0 || posX>=FRAME_GRID_COLS ||posY<0 || posY>=FRAME_GRID_ROWS)
return false;
return true;
}
}
在System.h中添加函数定义:
void LoadMap(const string &filename);
并在对应的System.cc中添加了定义
//地图加载
void System::LoadMap(const string &filename)
{
SystemSetting* mySystemSetting = new SystemSetting(mpVocabulary);
mySystemSetting->LoadSystemSetting(mySettingFile);
mpMap->Load(filename,mySystemSetting);
}
还需要在System.h中添加声明
std::string mySettingFile;
同时在构造函数函数中对mySettingFile成员变量赋值
mySettingFile = strSettingsFile;
做完这些修改之后 ,不要忘记修改CMakeLists.txt 文件。
#在add_library 中加入 src/InitkeyFrame.cc src/SystemSetting.cc
add_library(${PROJECT_NAME} SHARED
src/System.cc
src/Tracking.cc
src/LocalMapping.cc
src/LoopClosing.cc
src/ORBextractor.cc
src/ORBmatcher.cc
src/FrameDrawer.cc
src/Converter.cc
src/MapPoint.cc
src/KeyFrame.cc
src/Map.cc
src/MapDrawer.cc
src/Optimizer.cc
src/PnPsolver.cc
src/Frame.cc
src/KeyFrameDatabase.cc
src/Sim3Solver.cc
src/Initializer.cc
src/Viewer.cc
src/InitkeyFrame.cc
src/SystemSetting.cc
)
重新编译程序,然后在Examples文件中对应的示例程序中加入地图加载代码即可实现地图加载功能。
如在stereo_kitti.cc文件中加入如下语句:
SLAM.LoadMap("/home/ORB_SLAM2/Examples/Stereo/map.bin");