TempFile 在 dir 目录中创建一个以 prefix 为前缀的临时文件,并将其以读
写模式打开。返回创建的文件对象和遇到的错误。
如果 dir 为空,则在默认的临时目录中创建文件(参见 os.TempDir),多次
调用会创建不同的临时文件,调用者可以通过 f.Name() 获取文件的完整路径。
调用本函数所创建的临时文件,应该由调用者自己删除。
func TempFile(dir, prefix string) (f *os.File, err error)
例子:
package main
import (
"io/ioutil"
"log"
"os"
)
func main() {
content := []byte("temporary file's content")
tmpfile, err := ioutil.TempFile("", "example")
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmpfile.Name()) // clean up
if _, err := tmpfile.Write(content); err != nil {
log.Fatal(err)
}
if err := tmpfile.Close(); err != nil {
log.Fatal(err)
}
}
os.Mkdir("test_go", 0777)
func MkdirAll(path string, perm FileMode) error
例如:
os.MkdirAll("test_go/go1/go2", 0777)
删除就简单多了:
err := os.Remove("test_go")
if err != nil {
fmt.Println(err)
}
os.RemoveAll("test_go")
可以使用os中的Open方法读取一文件:
file, err := os.Open("file.go") // For read access.
if err != nil {
log.Fatal(err)
}
dat, err := ioutil.ReadFile("file.go")
check(err)
fmt.Print(string(dat))
f, err := os.OpenFile("file.go", os.O_RDWR|os.O_CREATE, 0755)
if err != nil {
log.Fatal(err)
}
if err := f.Close(); err != nil {
log.Fatal(err)
}
golang的defer关键字,它可以在函数返回前执行一些操作,最常用的就是打开一个资源(例如一个文件、数据库连接等)时就用defer延迟关闭改资源,以免引起内存泄漏。例如:
func do() (ok bool) {
file,_ := os.Open("c:\a.txt")
defer file.Close()
// doSomething
return ok
}
在官方的文档中看到defer的执行顺序是逆序的,也就是先进后出的顺序:
for i := 0; i < 5; i++ {
defer fmt.Printf("%d ", i)
}
打印结果是:4,3,2,1,0
例子:
func deferRet(x,y int) (z int){
defer z += 100
z = x + y
return z + 50 // 执行顺序 z = z+50 -> (call defer)z = z+100 -> ret
}
func main() {
i := deferRet(1,1)
println(i) // print 152
}
func (r *Request) FormFile(key string) (multipart.File, *multipart.FileHeader, error)
//对于指定格式的key,FormFile返回符合条件的第一个文件,如果有必要的话,该函数会调用ParseMultipartForm和ParseForm。
func (r *Request) ParseForm() error
//解析URL中的查询字符串,并将解析结果更新到r.Form字段。对于POST或PUT请求,ParseForm还会将body当作表单解析,并将结果既更新到r.PostForm也更新到r.Form。解析结果中,POST或PUT请求主体要优先于URL查询字符串(同名变量,主体的值在查询字符串的值前面)。如果请求的主体的大小没有被MaxBytesReader函数设定限制,其大小默认限制为开头10MB。ParseMultipartForm会自动调用ParseForm。重复调用本方法是无意义的。
关于FormFile和ParseForm ,有兴趣可以去详读一下golang中net/http包用法 这篇文章
//第一个参数为客户端发起http请求时的接口名,第二个参数是一个func,负责处理这个请求。
http.HandleFunc("/login", loginTask)
//服务器要监听的主机地址和端口号
err := http.ListenAndServe("192.168.1.27:8081", nil)
golang http的handle模块(一般也称为钩子模块),通过高级语言的匿名函数很容易实现这种内嵌功能的handle
我们一般这样使用golang的http HandleFunc来为http的server端做相应的处理
http.HandleFunc("/", xxx_FUN)
err := http.ListenAndServe(":8080", nil)
if err != nil {
log.Fatal("ListenAndServe: ", err)
}
我们再深入源码仔细看看http.HandleFunc的实现
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
// NewServeMux allocates and returns a new ServeMux.
var DefaultServeMux = NewServeMux()
func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
type ServeMux struct {
mu sync.RWMutex //一个读写锁
m map[string]muxEntry //一个path(patterns)的映射map
hosts bool // whether any patterns contain hostnames
}
再来看看ListenAndServe的具体实现
func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()
}
func (srv *Server) ListenAndServe() error {
addr := srv.Addr
if addr == "" {
addr = ":http"
}
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}
// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
func (srv *Server) Serve(l net.Listener) error {
defer l.Close()
var tempDelay time.Duration // how long to sleep on accept failure
for {
rw, e := l.Accept()
if e != nil {
if ne, ok := e.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
time.Sleep(tempDelay)
continue
}
return e
}
tempDelay = 0
c, err := srv.newConn(rw)
if err != nil {
continue
}
c.setState(c.rwc, StateNew) // before Serve can return
go c.serve() //看来这个c.serve是处理的入口
}
}
看来这个c.serve是处理的入口
// Serve a new connection.
func (c *conn) serve() {
origConn := c.rwc // copy it before it's set nil on Close or Hijack
defer func() {
if err := recover(); err != nil {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
if !c.hijacked() {
c.close()
c.setState(origConn, StateClosed)
}
}()
if tlsConn, ok := c.rwc.(*tls.Conn); ok {
if d := c.server.ReadTimeout; d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
}
if d := c.server.WriteTimeout; d != 0 {
c.rwc.SetWriteDeadline(time.Now().Add(d))
}
if err := tlsConn.Handshake(); err != nil {
c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
return
}
c.tlsState = new(tls.ConnectionState)
*c.tlsState = tlsConn.ConnectionState()
if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
if fn := c.server.TLSNextProto[proto]; fn != nil {
h := initNPNRequest{tlsConn, serverHandler{c.server}}
fn(c.server, tlsConn, h)
}
return
}
}
for {
w, err := c.readRequest()
if c.lr.N != c.server.initialLimitedReaderSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive)
}
if err != nil {
if err == errTooLarge {
// Their HTTP client may or may not be
// able to read this if we're
// responding to them and hanging up
// while they're still writing their
// request. Undefined behavior.
io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
c.closeWriteAndWait()
break
} else if err == io.EOF {
break // Don't reply
} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
break // Don't reply
}
io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
break
}
// Expect 100 Continue support
req := w.req
if req.expectsContinue() {
if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// Wrap the Body reader with one that replies on the connection
req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
}
req.Header.Del("Expect")
} else if req.Header.get("Expect") != "" {
w.sendExpectationFailed()
break
}
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
serverHandler{c.server}.ServeHTTP(w, w.req) //这个是入口
if c.hijacked() {
return
}
w.finishRequest()
if w.closeAfterReply {
if w.requestBodyLimitHit {
c.closeWriteAndWait()
}
break
}
c.setState(c.rwc, StateIdle)
}
}
Handler处理的入口就是serverHandler{c.server}.ServerHTTP(w,w.req)
,最终到HandleFunc的执行
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
if r.Method != "CONNECT" {
if p := cleanPath(r.URL.Path); p != r.URL.Path {
_, pattern = mux.handler(r.Host, p) //接下来处理
url := *r.URL
url.Path = p
return RedirectHandler(url.String(), StatusMovedPermanently), pattern
}
}
return mux.handler(r.Host, r.URL.Path) //接下来处理
}
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
mux.mu.RLock()
defer mux.mu.RUnlock()
// Host-specific pattern takes precedence over generic ones
if mux.hosts {
h, pattern = mux.match(host + path)
}
if h == nil {
h, pattern = mux.match(path)
}
if h == nil {
h, pattern = NotFoundHandler(), "" //如果handler对应的匿名函数为空,则返回默认的匿名函数
}
return
}
// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
if r.RequestURI == "*" {
if r.ProtoAtLeast(1, 1) {
w.Header().Set("Connection", "close")
}
w.WriteHeader(StatusBadRequest)
return
}
h, _ := mux.Handler(r) //接下来处理
h.ServeHTTP(w, r) //接下来处理
}
//接下来就初始时候执行的操作
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
mux.Handle(pattern, HandlerFunc(handler))
}
func (mux *ServeMux) Handle(pattern string, handler Handler) { //处理pattern
mux.mu.Lock()
defer mux.mu.Unlock()
if pattern == "" {
panic("http: invalid pattern " + pattern)
}
if handler == nil {
panic("http: nil handler")
}
if mux.m[pattern].explicit {
panic("http: multiple registrations for " + pattern)
}
mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern} //设置ServeMux的map
if pattern[0] != '/' {
mux.hosts = true
}
// Helpful behavior:
// If pattern is /tree/, insert an implicit permanent redirect for /tree.
// It can be overridden by an explicit registration.
n := len(pattern)
if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
// If pattern contains a host name, strip it and use remaining
// path for redirect.
path := pattern
if pattern[0] != '/' {
// In pattern, at least the last character is a '/', so
// strings.Index can't be -1.
path = pattern[strings.Index(pattern, "/"):]
}
mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
}
}
最后再看看通过mux匹配获取对应的map的操作:
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
var n = 0
for k, v := range mux.m {
if !pathMatch(k, path) { //匹配
continue
}
if h == nil || len(k) > n {
n = len(k)
h = v.h
pattern = v.pattern
}
}
return
}
注意:语句http.HandlerFunc(handler.list)是一个转换而非一个函数调用,因为http.HandlerFunc是一个类型
package main
import "fmt"
import "net/url"
import "strings"
func main() {
//我们将解析这个 URL 示例,它包含了一个 scheme,认证信息,主机名,端口,路径,查询参数和片段。
s := "postgres://user:[email protected]:5432/path?k=v#f"
//解析这个 URL 并确保解析没有出错。
u, err := url.Parse(s)
if err != nil {
panic(err)
}
//直接访问 scheme。
fmt.Println(u.Scheme)
//User 包含了所有的认证信息,这里调用 Username和 Password 来获取独立值。
fmt.Println(u.User)
fmt.Println(u.User.Username())
p, _ := u.User.Password()
fmt.Println(p)
//Host 同时包括主机名和端口信息,如过端口存在的话,使用 strings.Split() 从 Host 中手动提取端口。
fmt.Println(u.Host)
h := strings.Split(u.Host, ":")
fmt.Println(h[0])
fmt.Println(h[1])
//这里我们提出路径和查询片段信息。
fmt.Println(u.Path)
fmt.Println(u.Fragment)
//要得到字符串中的 k=v 这种格式的查询参数,可以使用 RawQuery 函数。你也可以将查询参数解析为一个map。已解析的查询参数 map 以查询字符串为键,对应值字符串切片为值,所以如何只想得到一个键对应的第一个值,将索引位置设置为 [0] 就行了。
fmt.Println(u.RawQuery)
m, _ := url.ParseQuery(u.RawQuery)
fmt.Println(m)
fmt.Println(m["k"][0])
}
//运行我们的 URL 解析程序,显示全部我们提取的 URL 的不同数据块。
$ go run url-parsing.go
postgres
user:pass
user
pass
host.com:5432
host.com
5432
/path
f
k=v
map[k:[v]]
v