组合数取模(逆元+快速幂)

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu
 
LightOJ 1067
 

Description
Given n different objects, you want to take k of them. How many ways to can do it?
For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.
Take 1, 2
Take 1, 3
Take 1, 4
Take 2, 3
Take 2, 4
Take 3, 4

Input
Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).


Output
For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input
3
4 2
5 0
6 4
Sample Output
Case 1: 6
Case 2: 1

Case 3: 15

除法求模不能类似乘法,对于(A/B)mod C,直接(A mod C)/ (B mod C)是错误的;找到B的逆元b(b=B^-1);求出(A*b)modC即可;

由费马小定理:B 关于 P 的逆元为  B^(p-2);

费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。 所以,a^-1*a=1=a^(p-1),所以:a^-1=a^(p-2);

数学排列组合公式:C(n,m)= n!/(m!*(n-m)!)

代码:

#include  
#include  
#include  
using namespace std;  
#define LL long long  
#define G  1100000  
#define mod 1000003  
LL pri[G];  
LL ni[G],ans;  
LL pow(LL a,int b)  
{  
    LL ans=1,base=a;  
    while (b>0)  
    {  
        if (b%2==1)  
            ans=(base*ans)%mod;  
        base=(base*base)%mod;  
        b/=2;  
    }  
    return ans;  
}  
void s()   //打表 
{  
    pri[0]=1;  
    ni[0]=1;  
    for (int i=1;i


你可能感兴趣的:(OJ练习)