- 【3.6 python中的numpy编写一个“手写数字识”的神经网络】
wang151038606
深度学习入门pythonnumpy神经网络
3.6python中的numpy编写一个“手写数字识”的神经网络要使用Python中的NumPy库从头开始编写一个“手写数字识别”的神经网络,我们通常会处理MNIST数据集,这是一个广泛使用的包含手写数字的图像数据集。但是,完全用NumPy来实现神经网络(包括数据的加载、预处理、模型定义、前向传播、损失计算、反向传播和权重更新)是一个相当复杂的任务,因为NumPy本身不提供自动微分或高级优化算法(
- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- Pytorch ResNet Fashion-Mnist
hyhchaos
pytorch实现ResNetonFashion-MNISTfrom__future__importprint_functionimporttorchimporttimeimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transformsastransformsfromtorchimp
- 深度学习系列(1) TensorFlow---Tensorflow学习路线
CoderIsArt
Python机器学习与深度学习深度学习tensorflow学习
学习TensorFlow是掌握深度学习和机器学习的关键一步。以下是一个详细的TensorFlow学习路线图,涵盖从基础到高级的知识点和实践,帮助你逐步掌握TensorFlow并应用于实际问题中。1.基础知识1.1了解TensorFlow概念:什么是TensorFlow?它的用途和应用场景。安装:如何在本地机器上安装TensorFlow,使用pip安装基本库。文档和教程:熟悉TensorFlow的官
- 【ShuQiHere】用类来实现LSTM:让你的模型拥有更强的记忆力
ShuQiHere
代码武士的机器学习秘传lstm人工智能
【ShuQiHere】欢迎回到ShuQiHere!今天我们要来聊一聊LSTM(LongShort-TermMemory),一种非常流行的循环神经网络(RNN)变种。LSTM以其卓越的记忆能力和处理长序列数据的强大性能而闻名。今天,我们将用类的方式来实现LSTM,并将其应用于手写数字识别任务中。1.什么是LSTM?LSTM是一种特殊的RNN,它通过引入“门”的机制,能够更好地捕捉长时间跨度的依赖关系
- 【ShuQiHere】卷积神经网络(CNN):从输入到输出的逐层解析
ShuQiHere
cnn人工智能神经网络
【ShuQiHere】卷积神经网络(ConvolutionalNeuralNetwork,CNN)是深度学习领域的一个里程碑。它的出现不仅改变了计算机视觉的格局,还影响了各类数据处理任务,如语音识别和自然语言处理。随着深度学习的蓬勃发展,CNN成为了图像处理任务中的标准工具。那么,CNN到底是什么?它又是如何工作的?在本文中,我们将通过手写数字识别的例子,逐层解析CNN的每个部分,帮助你全面理解这
- 百度飞桨教程(一)
怎么这么多名字都被占了
百度paddlepaddle人工智能
百度飞桨(paddle),是一个开源的深度学习平台百度飞桨的安装pipinstallpaddlepaddle-ihttps://mirror.baidu.com/pypi/simple手写数字识别案例我们来通过一个案例,大概了解paddle的使用importpaddleimportnumpyasnpfrompaddle.vision.transformsimportNormalizetransfo
- 神经网络分类任务python入门
三十度角阳光的问候
神经网络分类python
目录Mnist分类任务读取Mnist数据集转换成tensor才能参与后续建模训练torch.nn.functional创建一个model来更简化代码使用TensorDataset和DataLoader来简化整个过程Mnist分类任务-网络基本构建与训练方法,常用函数解析-torch.nn.functional模块-nn.Module模块读取Mnist数据集-会自动进行下载frompathlibim
- 实现CNN对mnist手写数字分类
文哥的学习日记
本文使用的tensorflow版本:1.4tensorflow安装:pipinstalltensorflow1、CNN哇咔咔,熟悉的味道,自己第一次接触tensorflow也是写的CNN的例子,当时对于CNN也是一知半解,经过了一年,终于差不多搞清楚了CNN的原理。CNN中需要理解的主要有两点,稀疏连接SparseConnectivity(每个神经元仅与前一层部分神经元相连接)以及参数共享Para
- torch.nn到底是什么?
yanglamei1962
PyTorch学习教程python深度学习pytorch
torch.nn到底是什么?我们建议将本教程作为笔记本而不是脚本来运行。要下载笔记本(.ipynb)文件,请单击页面顶部的链接。PyTorch提供设计精美的模块和类torch.nn,torch.optim,Dataset和DataLoader神经网络。为了充分利用它们的功能并针对您的问题对其进行自定义,您需要真正了解它们在做什么。为了建立这种理解,我们将首先在MNIST数据集上训练基本神经网络,而
- 深度学习五种不同代码实现,神经网络,机器学习
学呗~那不然呢
pycharm
第一种importnumpyasnpimporttensorflowastfmnist=tf.keras.datasets.mnistimportmatplotlib.pyplotaspltimportmatplotlibmatplotlib.use("TkAgg")(x_train,y_train),(x_test,y_test)=mnist.load_data()x_train=x_train
- cnn卷积神经网络反向传播,卷积神经网络维度变化
阳阳2013哈哈
PHPcnn机器学习深度学习神经网络
卷积神经网络是如何反向调整参数的?卷积神经网络反向传播和bp有什么区别如何理解神经网络里面的反向传播算法反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结
- Python(PyTorch)物理变化可微分神经算法
亚图跨际
算法Python神经网络物理变化分层物理计算多模机械振荡非线性电子振荡光学谐波可微分数学模型动力方程
要点使用受控物理变换序列实现可训练分层物理计算|多模机械振荡、非线性电子振荡器和光学二次谐波生成神经算法验证|训练输入数据,物理系统变换产生输出和可微分数字模型估计损失的梯度|多模振荡对输入数据进行可控卷积|物理神经算法数学表示、可微分数学模型|MNIST和元音数据集评估算法语言内容分比PyTorch可微分优化假设张量xxx是元参数,aaa是普通参数(例如网络参数)。我们有内部损失Lin=a0⋅x
- 24.8.19学习笔记(MNIST,)
kkkkk021106
学习笔记
pytorchMNIST手写数字识别:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms#设定随机种子以保证结果可复现torch.manual_seed(0)#定义超参数batch_size=32learning_rate=0.001num_epochs=10#1
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 08 2024年1月最新优化算法 美洲狮优化算法(PO) 基于美洲狮PO优化CNN-BiLSTM-Attention的时间序列数据预测算法PO-CNN-LSTM-Attention 优先使用就是创新!
机器不会学习CSJ
算法cnnlstm机器学习人工智能神经网络matlab
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、美洲狮优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、PO-CNN-BiLSTM-Attention时间序列数据预测模型六、核心代码七、结果展示八、获取方式一、美洲狮优化算法美洲狮是一种原产于美洲大陆的大型猫科动物,在南美洲的安第斯山脉到加拿大的育空地区都有它们的栖息地。作为美洲第二大的猫
- 07基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的时间序列预测算法
机器不会学习CSJ
时间序列预测cnn算法人工智能
文章目录鲸鱼优化算法CNN卷积神经网络BiLSTM双向长短期记忆网络Attention注意力机制WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制数据展示代码程序实验结果获取方式鲸鱼优化算法鲸鱼优化算法(WhaleOptimizationAlgorithm,WOA)是一种启发式优化算法,灵感来源于座头鲸的捕食行为。该算法最早由SeyedaliMirjalil
- 变分自编码器(VAE)PyTorch Lightning 实现
小嗷犬
Python深度学习pytorch人工智能python
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录VAE简介基本原理应用与优点缺点与挑战使用VAE生成MNIST手写数字忽略警告导入必要的库设置随机种子cuDNN设置超参数设置数据加载定义VAE模型定义损失函数定义Lightning模型训练模型绘制训
- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- TensorFlow 在mnist上实现siamese net,出现please use urllib or similar directly错误
qq_41895190
tensorflowTensorFlowmnistsiamesenetmnist手写数字分类手写数字分类
TensorFlow在mnist上实现siamesenet(TensorFlow实现mnist手写数字分类,也用同样的方法解决)在使用fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.read_data_sets('./data/mnist',one_hot=True)导入mnist数据集时,无法下载。出
- 运行《tensorflow21天》的warning
guxue365
AI
在运行第一章的时候所出现得提示信息wt@wt-desktop:~/software/AI/chapter_1$pythondownload.pyWARNING:tensorflow:Fromdownload.py:5:read_data_sets(fromtensorflow.contrib.learn.python.learn.datasets.mnist)isdeprecatedandwill
- Tensorflow基础代码报错学习笔记11——classification分类学习
7STARX
tensorflow学习笔记tensorflow机器学习python
原教程地址原代码更换了tensorflow1.0版本之后代码跟着up主的教程敲就可以了,这里面没什么需要改动的importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_data#如果电脑中没有数据集,会自动下载mnist=input_data.read_data_sets('MNIST_data',one_hot=
- tensorflow学习笔记(二):机器学习必备API
我愛大泡泡
深度学习机器学习深度学习
前一节介绍了一些最基本的概念和使用方法。因为我个人的最终目的还是在深度学习上,所以一些深度学习和机器学习模块是必须要了解的,这其中包括了tf.train、tf.contrib.learn、还有如训练神经网络必备的tf.nn等API。这里准备把常用的API和使用方法按照使用频次进行一个排列,可以当做一个以后使用参考。这一节介绍的内容可以有选择的看。而且最全的信息都在TensorFlow的API里面了
- 机器学习第二十五周周报 ConvLSTM
沽漓酒江
机器学习人工智能
文章目录week25ConvLSTM摘要Abstract一、李宏毅机器学习二、文献阅读1.题目2.abstract3.网络架构3.1降水预报问题的建模3.2ConvolutionalLSTM3.3编码-预测结构4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Moving-MNISTDataset4.3.2雷达回波数据集4.4结论三、基于pytorch实现ConvLST
- AIGC实战——能量模型(Energy-Based Model)
盼小辉丶
AIGC深度学习能量模型
AIGC实战——能量模型0.前言1.能量模型1.1模型原理1.2MNIST数据集1.3能量函数2.使用Langevin动力学进行采样2.1随机梯度Langevin动力学2.2实现Langevin采样函数3.利用对比散度训练小结系列链接0.前言能量模型(Energy-basedModel,EBM)是一类常见的生成模型,其借鉴了物理系统建模的一个关键思想,即事件的概率可以用玻尔兹曼分布来表示。玻尔兹曼
- 计算机设计大赛 深度学习YOLOv5车辆颜色识别检测 - python opencv
iuerfee
python
文章目录1前言2实现效果3CNN卷积神经网络4Yolov56数据集处理及模型训练5最后1前言优质竞赛项目系列,今天要分享的是**基于深度学习YOLOv5车辆颜色识别检测**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior/post
- 使用Keras和tensorfow,CNN手写数字识别
smallcui
查看数据fromtensorflow.keras.datasetsimportmnistimportmatplotlib.pyplotasplt(train_x,train_y),(test_x,test_Y)=mnist.load_data()plt.figure(figsize=(10,10))foriinrange(25):plt.subplot(5,5,i+1)plt.xticks([])
- tensorflow利用CNN实现MNIST图片识别
Lornatang
FunctioninstructionsThedataData:Thisistheclassicmnisthandwritingrecognitionimagedata.Downloadlink:thisDirectorytree├──__init__.py├──__pycache__│└──base.cpython-37.pyc├──base.py├──base.pyc├──data│├──t1
- [Tensorflow][原创]tensorflow保存PB模型的几种方法总结
未来自主研究中心
第一种方法:(官方不推荐)(1)引入库fromtensorflow.examples.tutorials.mnistimportinput_data(2)一般在seession初始化全局变量下写这句代码constant_graph=graph_util.convert_variables_to_constants(sess,sess.graph_def,['output_node_name'])其
- Internet Resources 6
韫左寻
2.制定一份资源清单。对于互联网范围的研究,谷歌是杰出的。尽管如此,有时候你的研究范围会更窄,重点也会更集中。在这种情况下,了解一些与主题相关的特定网站是有帮助的。这是一个很好的入门列表,按一般主题排列。对于有争议问题的各种观点的网站:http://www.townhall.com/columnistshttp://www.nytimes.com/pages/opinion/columnshttp
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文