【染色 最短路】luogu_2124 奶牛美容

题意

给出3个块,求出把它们连起来至少还要用多少个格。

思路

把每个块合并后,求出每个块到每个格的最短路以及块之间的最短路。并以块之间直接相连(可能有点重复)的最小代价为初始答案,枚举块之间的中间点进行答案更新。

代码

#include 
#include 
#include 

const int dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};
int n, m;
int v[51][51], c[51][51], dis[4][51][51], f[4][4];
char a[51][51];

void color(int col, int x, int y) {
	if (v[x][y]) return;
    if (a[x][y] == 'X') {
		v[x][y] = 1;
		c[x][y] = col;
	} else return;
    for(int i = 0; i < 4; i++){
        int xx = dx[i] + x, yy = dy[i] + y;
        color(col, xx, yy);
    }
}

void cal(int col, int x, int y) {
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			dis[col][i][j] = std::min(dis[col][i][j], abs(x - i) + abs(y - j));
}

int main() {
	scanf("%d %d", &n, &m);
	for (int i = 1; i <= n; i++)
		scanf("%s", a[i] + 1);
	int cnt = 0;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			if (!v[i][j] && a[i][j] == 'X') color(++cnt, i, j);
	memset(dis, 127 / 3, sizeof(dis));
	memset(f, 127 / 3, sizeof(f));
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			if (a[i][j] == 'X') cal(c[i][j], i, j);
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++) {
			if (a[i][j] != 'X') continue; 
			f[c[i][j]][1] = std::min(f[c[i][j]][1], dis[1][i][j]);
			f[c[i][j]][2] = std::min(f[c[i][j]][2], dis[2][i][j]);
			f[c[i][j]][3] = std::min(f[c[i][j]][3], dis[3][i][j]);
			f[1][c[i][j]] = f[c[i][j]][1];
			f[2][c[i][j]] = f[c[i][j]][2];
			f[3][c[i][j]] = f[c[i][j]][3];
		}
	int ans = std::min(f[1][2] + f[1][3], std::min(f[2][1] + f[2][3], f[3][1] + f[3][2]));
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			ans = std::min(ans, dis[1][i][j] + dis[2][i][j] + dis[3][i][j]);
	printf("%d", ans - 2);//计算距离之间的格点
}

你可能感兴趣的:(图论)