- 神经网络量化(八)
weixin_38498942
神经网络Qualcomm
神经网络量化(八)4.5实验5摘要与结论4.5实验 使用我们的QAT流程,我们对在第3.6节中使用的相同模型进行量化和评估。我们的结果在表10中展示了不同位宽和量化粒度的情况下。DeepLabV3在PascalVOC上进行了80个epoch的训练;EfficientDet在COCO2017上进行了20个epoch的训练;所有其他视觉模型在ImageNet上进行了20个epoch的训练。BERT-
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 前向传播网络实现(类与函数)——TensorFlow2.4
SatVision炼金士
网络深度学习keras
文章目录前言一、基于类的前向传播二、基于函数的前向传播总结前言最近开始着手语义分割方面的内容,由于刚开始入门深度学习,看了一下deeplab的源码,里面所有网络结构基本上都是由类进行定义的(目的是为了方便复用),而大部分博主的复现代码基本上都是基于函数实现,作为小白的我一时有点蒙圈。为了更好地理解前向传播吧以及类与函数定义的网络结构,本文分别用类核函数实现了简单的前向传播函数提示:以下是本篇文章正
- 老版本labelme如何不保存imagedata
Diros1g
labelme标注语义3分割
我的版本是3.16,默认英文且不带取消保存imagedata的选项。最简单粗暴的方法就是在·json文件保存时把传递过来的imagedata数据设定为None,方法如下:找到labelme的源文件,例如:D:\conda\envs\deeplab\Lib\site-packages\labelme输出json的文件为label_file.py160行改成如下形式即可
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- MMLAB的实例分割算法mmsegmentation
我爱派生
实例分割算法深度学习人工智能计算机视觉python
当谈及实例分割时,人们往往只会提到一些早期的经典算法,比如PSP-Net、DeepLabv3、DeepLabv3+和U-Net。然而,实例分割领域已经在过去的五六年中蓬勃发展,涌现出许多新的算法。今天,让我们一起探索这个算法库,它包含了众多最新的实例分割算法。后面,我将会为大家详细介绍如何使用这个算法库。总的来说,若你关注实例分割领域的最新进展,这个算法库值得你拥有。1、目前支持的算法:-[x][
- PyTorch 2.2 中文官方教程(二十)
绝不原创的飞龙
人工智能pytorch人工智能python
移动设备在iOS上进行图像分割DeepLabV3原文:pytorch.org/tutorials/beginner/deeplabv3_on_ios.html译者:飞龙协议:CCBY-NC-SA4.0作者:JeffTang审阅者:JeremiahChung介绍语义图像分割是一种计算机视觉任务,使用语义标签标记输入图像的特定区域。PyTorch语义图像分割DeepLabV3模型可用于使用20个语义类
- 【转载】图像分割 DeepLab v2
dopami
https://blog.csdn.net/cv_family_z/article/details/72643479标题:DeepLab:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs网站:http://liangchiehchen.com/projects/Dee
- 二、MMsegmentation 配置教程+训练教程+模型测试( 服务器)
当像鸟飞向你的山
病理图像深度学习神经网络图像处理
时间:2022年4月8日内容:训练MMSegmentation中的deeplabv3深度神经网络如果想要系统的学习,可以参考官方文档:https://mmsegmentation.readthedocs.io/en/latest/get_started.html#installation但是我理解力有限感觉不太详细。基础的配置和介绍可以看我的上一篇博客,这篇讲一下训练。安利一个很好用的ssh工具:
- 【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第一步)-----环境配置
努力弹琴的大风天
Deeplabv3+复现pytorch深度学习ubuntulinuxpython
用pytorch复现Deeplabv3+(第一步)-----环境配置本文是使用的Linux发行版之一的Ubuntu18.04,在pytorch下复现的,使用Windows或者在tensorflow上复现的同学自动略过;本文持续更新中,有同学有环境配置上不懂的问题,随时可以在评论区发表评论,博主看到后会给出指导;运行Deeplabv3需要的硬件显卡需要好一点,本文使用的是NVIDIAGeForceR
- 【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----cityscapes数据集训练和预测
努力弹琴的大风天
Deeplabv3+复现pytorch人工智能python深度学习ubuntu
在查看本篇文章之前,请先查看博主的上一篇文章【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第一步)-----环境配置_努力弹琴的大风天的博客-CSDN博客配置好环境之后,再进行接下来的操作注意:本文原来是在Ubuntu18.04上测试的,后来在windows上搭建了环境,现在是在windows上测试的。目录一、源码、数据集和预训练下载2.1源码下载2.2
- 【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签
努力弹琴的大风天
Deeplabv3+复现pytorch人工智能python深度学习
本文是在前面两篇文章的基础上,讲解如何更改训练数据集颜色,需要与前面两篇文章连起来看。本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致,对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集,分别是cityscapesScripts-master、semantic-kitti-api-master和cityscapes数据集:cityscapesScri
- Deeplab系列语义分割模型
CPones
计算机视觉深度学习神经网络
目录一、网络模型1.deeplabv12.deeplabv23.deeplabv34.deeplabv3+二、空洞卷积三、代码实现总结一、网络模型1.deeplabv1深度卷积神经网络(DCNN)和条件随机场(CRF)相结合来解决像素级分类问题,最后一层的CRF提高模型捕捉细节和边缘分割的能力,对于大量使用最大池化和下采样导致分辨率下降的问题,通过空洞卷积来扩大感受野。2.deeplabv2ASP
- 语义分割-DeepLab系列
studyeboy
语义分割SemanticImageSegmentationDeepLab
文章目录官方PPTRethinkingAtrousConvolutionforSemanticImageSegmentationDeepLabv1DeepLabv2DeepLabv3DeepLabv3+参考文献官方PPTRethinkingAtrousConvolutionforSemanticImageSegmentationDeepLabv1paperSemanticImageSegmenta
- 深入理解DeepLab系列语义分割网络
深蓝学院
深度学习计算机视觉大数据人工智能语义分割深度学习计算机视觉
语义分割是指在像素级别上进行分类,从而转换得到感兴趣区域的掩膜。说起语义分割的发展则肯定绕不开DeepLab系列语义分割网络,该系列网络由谷歌团队提出并发展,在VOC2012等公用语义分割数据集上,取得了较好的效果。1.DeepLabV1DeepLabV1[1]于2014年提出,在PASCALVOC2012数据集上取得了分割任务第二名的成绩。该网络是研究FCN之后发现在FCN中池化层会使得特征图的
- DeepLabV2网络简析
太阳花的小绿豆
深度学习网络解析语义分割深度学习计算机视觉DeepLabV2语义分割
论文名称:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs论文下载地址:https://arxiv.org/abs/1606.00915论文对应开源项目:http://liangchiehchen.com/projects/DeepLab.html视频讲解:https
- 语义分割DeepLab v1/v2/v3系列网络模型
花花少年
深度学习DeepLab语义分割
重要说明:本文从网上资料整理而来,仅记录博主学习相关知识点的过程,侵删。一、参考资料经典的语义分割(semanticsegmentation)网络模型二、DeepLab系列网络模型1.DeepLabv1原始论文:[1]DeepLabV1网络简析bilibili视频讲解:DeepLabV1网络简介(语义分割)DeepLabv1加入了多尺度的特性,是LargeFOV的升级版。1.1引言针对语义分割任务
- deeplab 系列文章
horsetif
deeplabv1:semanticimagesegmentationwithdeepconvolutionalnetsandfullyconnectedCRFs对于传统的DCNN网络来说,其实都是具有不变性的这个特征的,深度学习是十分适合高阶的计算机视觉任务。但是,对于底层的比如semanticsegmentation的任务来说,是十分不利的。目前的两个大问题就是:1,降采样问题。2,不变形问题
- Ubuntu c++调用python脚本(Anaconda)
Gone_float
ubuntupythonubuntuc++python
环境配置首先创建一个anaconda虚拟环境,环境名字可自己确定,这里使用call作为环境名:$condacreate-ncallpython==3.8安装成功后激活call环境$sourceactivate$condaactivatecall编辑~./bashrc文件,设置使用deeplabv3+_cityscapes环境下的python3.8aliaspython='~/anaconda3/e
- 图像分割实战-系列教程17:deeplabV3+ VOC分割实战5-------main.py
机器学习杨卓越
图像分割实战深度学习pytorch计算机视觉图像分割deeplab
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传deeplab系列算法概述deeplabV3+VOC分割实战1deeplabV3+VOC分割实战2deeplabV3+VOC分割实战3deeplabV3+VOC分割实战4deeplabV3+VOC分割实战510、main.py的main()函数defmain():opts
- 图像分割实战-系列教程13:deeplabV3+ VOC分割实战1-------项目介绍与参数解析
机器学习杨卓越
图像分割实战计算机视觉人工智能目标检测语义分割图像分割
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传deeplab系列算法概述deeplabV3+VOC分割实战1deeplabV3+VOC分割实战2deeplabV3+VOC分割实战3deeplabV3+VOC分割实战4deeplabV3+VOC分割实战51、项目介绍1.1VoC2012数据集介绍Visualobject
- 图像分割实战-系列教程14:deeplabV3+ VOC分割实战2-------数据读取
机器学习杨卓越
图像分割实战计算机视觉人工智能语义分割deeplab深度学习pytorch
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传deeplab系列算法概述deeplabV3+VOC分割实战1deeplabV3+VOC分割实战2deeplabV3+VOC分割实战3deeplabV3+VOC分割实战4deeplabV3+VOC分割实战53、数据集读取在第2部分我们介绍了项目用到的参数,这部分介绍怎么构
- 图像分割实战-系列教程16:deeplabV3+ VOC分割实战4-------网络结构2
机器学习杨卓越
图像分割实战深度学习计算机视觉pytorch图像分割deeplab
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传deeplab系列算法概述deeplabV3+VOC分割实战1deeplabV3+VOC分割实战2deeplabV3+VOC分割实战3deeplabV3+VOC分割实战4deeplabV3+VOC分割实战5本项目的网络结构在network文件夹中,主要在modeling.
- 图像分割实战-系列教程15:deeplabV3+ VOC分割实战3-------网络结构1
机器学习杨卓越
图像分割实战深度学习pytorch计算机视觉图像分割deeplab
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传deeplab系列算法概述deeplabV3+VOC分割实战1deeplabV3+VOC分割实战2deeplabV3+VOC分割实战3deeplabV3+VOC分割实战4deeplabV3+VOC分割实战5本项目的网络结构在network文件夹中,主要在modeling.
- 助力焊接场景下自动化缺陷检测识别,基于YOLOv8【n/s/m/l/x】全系列参数模型开发构建工业焊接场景下工件表面焊接缺陷检测识别分析系统
Together_CZ
自动化YOLO运维
焊接是一个不陌生但是对于开发来说相对小众的场景,在工件表面焊接场景下常常有对工件表面缺陷智能自动化检测识别的需求,工业AI结合落地是一个比较有潜力的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》《基于DeepLabV3Plus实现焊缝分割识别系统》《基于官方YOLOv4-
- 助力焊接场景下自动化缺陷检测识别,基于YOLOv8【n/s/m/l/x】全系列参数模型开发构建工业焊接场景下工件表面焊接裂纹缺陷检测识别分析系统
Together_CZ
自动化YOLO运维
焊接是一个不陌生但是对于开发来说相对小众的场景,在工件表面焊接场景下常常有对工件表面缺陷智能自动化检测识别的需求,工业AI结合落地是一个比较有潜力的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》《基于DeepLabV3Plus实现焊缝分割识别系统》《基于官方YOLOv4-
- 助力焊接场景下自动化缺陷检测识别,基于YOLOv5【n/s/m/l/x】全系列参数模型开发构建工业焊接场景下缺陷检测识别分析系统
Together_CZ
自动化YOLO运维
焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》《基于DeepLabV3Plus实现焊缝分割识别系统》《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》《探索工业智能
- 助力工业焊缝质量检测,基于YOLOv5【n/s/m/l/x】全系列参数模型开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统
Together_CZ
YOLO
焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》《基于DeepLabV3Plus实现焊缝分割识别系统》《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》《探索工业智能
- 助力焊接场景下自动化缺陷检测识别,基于YOLOv3模型开发构建工业焊接场景下缺陷检测识别分析系统
Together_CZ
自动化YOLO运维
焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》《基于DeepLabV3Plus实现焊缝分割识别系统》《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》《探索工业智能
- 助力工业焊缝质量检测,YOLOv7【tiny/l/x】不同系列参数模型开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统
Together_CZ
YOLO
焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》《基于DeepLabV3Plus实现焊缝分割识别系统》《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》《探索工业智能
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =