- 【数字化】华为数字化转型架构蓝图-2
平凡之大路
数字化数字化转型
目录1、客户联结的架构思路1.1ROADS体验设计1.2具体应用场景1.3统一的数据底座1.4案例与成效2、一线作战平台的架构思路2.1核心要素2.2关键功能2.3实施路径2.4案例与成效3、能力数字化的架构思路3.1能力数字化的核心目标3.2能力数字化的实施步骤3.3能力数字化的关键要素3.4能力数字化的成效与挑战3.5案例分享4、数字化运营的架构思路4.1核心架构要素4.2关键功能4.3实施路
- 数据结构应用实例(四)——最小生成树
cyzhou1221
数据结构基础数据结构
Content:一、问题描述二、算法思想三、代码实现四、两种算法的比较五、小结一、问题描述 利用prim算法和kruskal算法实现最小生成树问题;二、算法思想 首先判断图是否连通,只有在连通的情况下才进行最小树的生成;三、代码实现#include#include#include#definemaxx999999#pragmawarning(disable:4996)typedefstruct
- 【Python・统计学】Kruskal-Wallis检验/H检验(原理及代码)
TUTO_TUTO
python统计学python学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:Kruskal-Wallis检验(Kruskal-Wallistest),也称H检验【1.定义和简单原理】【2.应用条件】【3.数据实例以及Python代码】【4.多重比较(例:Dunn检验)】1.定义和简单原理Krusk
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- 华为OD机试 - 5G网络建设 - Kruskal 算法(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为od5G网络javacc++python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述现需要在某城市进行5G网络建设,已经选取N
- 算法训练营|图论第7天 prim算法 kruskal算法
人间温柔观察者
算法图论数据结构
题目:prim算法题目链接:53.寻宝(第七期模拟笔试)(kamacoder.com)代码:#include#include#includeusingnamespacestd;intmain(){intv,e;intx,y,k;cin>>v>>e;vector>grid(v+1,vector(v+1,10001));while(e--){cin>>x>>y>>k;grid[x][y]=k;grid
- 并查集【算法 12】
终末圆
算法算法cc++python数据结构acmc语言
并查集(Union-Find)的基础概念与实现并查集(Union-Find)是一种用于处理不相交集合(disjointsets)的数据结构,常用于解决连通性问题。典型的应用场景包括动态连通性问题(如网络节点连通性检测)、图论中的最小生成树(Kruskal算法)、社交网络中的群体归属等。并查集的两大基本操作合并操作(Union):将两个不同的集合合并为一个集合。查找操作(Find):查询某个元素属于
- 代码随想录day57 prim算法精讲 kruskal算法精讲
咸鱼的自我变强之路
代码随想录_刷题算法
代码随想录day57prim算法精讲kruskal算法精讲卡码网:53.寻宝代码随想录#include#include#includeusingnamespacestd;intmain(){intv,e;intx,y,k;cin>>v>>e;vector>grid(v+1,vector(v+1,10001));while(e--){cin>>x>>y>>k;grid[x][y]=k;grid[y]
- 最小生成树 - Kruskal算法
我想进大厂
算法c++图论
kruskal算法---求稀疏图的最小生成树步骤1,将所有边按权重从大到小排序,调用系统的sort函数2,枚举每条边a、b,权重cif(a、b不联通)就将这条边加入集合中输入格式第一行包含两个整数n和m。接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。输出格式共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impos
- 【ETOJ P1074】能不能走到捏 题解(Kruskal算法+并查集+启发式合并)
HEX9CF
AlgorithmProblems算法
题目描述给定一个nnn个点,mmm条边的无向图,每条边有一个权值。问是否存在一条从1到nnn的路径使得路径上的权值的最大值最小,求出这个最大值。如果1号点和nnn号点不连通,则输出-1。注意:请勿采用递归形式的DFS,谨防爆栈。输入格式第一行两个整数nnn,mmm。(2≤n≤2×105,1≤m≤2×105)(2\leqn\leq2\times10^5,1\leqm\leq2\times10^5)(
- hdu 4408 Minimum Spanning Tree
luckycoding
hdu
题目连接:点击打开链接解法:利用kruskal算法把图划分成森林,同一点有相同最小的权值到别的点,通过determinant计算树的课数。总结:模板+自己不太懂=记录+重新学代码君:#include#include#include#defineLLlonglongusingnamespacestd;constintMAX=105;constintMAXE=1005;structnode{intse
- 最小生成树详解(Prim算法/Kruskal算法)
Stephen_Curry___
算法c++c语言数据结构图搜索算法
最小生成树⭐今天为大家带来的是最小生成树算法⭐在学习之前首先要搞清楚什么是最小生成树?给定一张边带权的无向图G=(V,E),其中V表示途中点的集合,E表示途中边的集合,=|V|,m=|E|。由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的以可生成树,其中边的权重之和最小被称为无向图G的最小生成树。所以最小生成树是用来计算最小边权问题。⭐最小生成树最常用的有两种算法:Prim算法(解
- Codeforces Round 923 (Div. 3)F
m0_74911187
codeforce算法c++深度优先图论
CF1927F.Microcycle题意:给定一个n个点,m条边的无向图,图不一定连通,要求找到图中的一个环,该环上的最小边权比图中所有环的边权要小,输出这个最小边权,所在的环上的节点数量以及按顺序输出所在的环上的所有节点。思路:因为要求最小边权,我们可以想到要用kruskal算法,首先将所有边权从大到小的顺序排序,然后按边权从大到小建立图,用并查集来判断环,因为是从大到小遍历边权,因此如果第一次
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 算法导论23章最小生成树习题—23.2练习
之墨_
算法算法最小生成树
23.2-1对于同一个输人图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的最小生成树就是T。假设我们想选择T作为最小生成树。然后,为了使用Kruskal算法获得此树,我们将首先按边的权重对边进行排序,然后通过选取包含在最小生成树中的一条边来解
- Python使用kruskal算法实现最小生成树
X Y sawyer
网络python算法
假如有多台计算机组成的局域网,不同计算机之间是使用光纤来连接的,如果把计算机看成是一个简单的节点,连接计算机的光纤看成是一条边,那这个局域网就可以抽象成为一个无向图:添加图片注释,不超过140字(可选)而对于这个图中的每个圆圈代表的是一个计算机,直线代表的是计算机之间的光纤连接,直线上的数字表示维护该条光纤所需要付出的成本,那现在需要降低维护成本,希望在不同计算机能够相互通信的基础上,去掉不必要的
- 克鲁斯卡尔(Kruskal)算法与普里姆(Prim)算法求最小生成树
ZYT_庄彦涛
数据结构算法算法Kruskal算法Prim算法
求下面带权图的最小(代价)生成树时,可能是克鲁斯卡尔(Kruskal)算法第2次选中但不是普里姆(Prim)算法(从v4开始)第2次选中的边是()。A.(v₁,v₃)B.(v₁,v₄)C.(v₂,v₃)D.(v₃,v₄)首先,认识什么是克鲁斯卡尔Kruskal算法和普里姆Prim算法↓克鲁斯卡尔Kruskal算法在整个过程中都是选取网中权值为最小的边克鲁斯卡尔算法是一个使网中所有顶点相连通而所需边
- 【第二十三课】最小生成树:prime 和 kruskal 算法(acwing858,859 / c++代码 )
爱写文章的小w
算法--学习笔记算法图论c++
目录前言Prime算法--加点法acwing-858代码如下一些解释Kruskal算法--加边法acwing-859并查集与克鲁斯卡尔求最小生成树代码如下一些解释前言之前学最短路的时候,我们都是以有向图为基础的,当时我们提到如果是无向图,只要记得两个顶点处都要加边就好了。而在最小生成树的问题中,我们所面临的大多都是无向图。这个姐姐对这两种算法的讲解非常清晰,没有代码部分,但是对于理解这两种算法的做
- 图(高阶数据结构)
GG_Bond20
数据结构数据结构算法c++
目录一、图的基本概念二、图的存储结构2.1邻接矩阵2.2邻接表三、图的遍历3.1广度优先遍历3.2深度优先遍历四、最小生成树4.1Kruskal算法4.2Prim算法五、最短路径5.1单源最短路径-Dijkstra算法5.2单源最短路径-Bellman-Ford算法5.3多源最短路径-Floyd-Warshall算法一、图的基本概念图是由顶点集合和边的集合组成的一种数据结构,记作有向图与无向图在有
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- 第三章 搜索与图论(三)(最小生成树,二分图)
一只程序媛li
蓝桥准备图论算法
一、最小生成树算法稠密图使用prim算法,稀疏图使用kruskal算法二、prim算法求最小生成树prim和dijkstra算法类似,都是找到符合某种条件的点,然后更新。prim使用到已经构成的部分最小树所有结点中最小的距离。dijkstra算法是使用到起点最小的距离。#include//858prim最小生成树(稠密图做法)usingnamespacestd;constintN=210,INF=
- excel统计分析——多组数据的秩和检验
maizeman126
excel统计分析秩和检验
单因素资料不完全满足方差的基本假定时,可进行数据转换后再进行方差分析,但有时数据转换后仍不满足方差分析的基本假定,就只能进行秩和检验了。多组数据秩和检验的主要方法为Kruskal-Wallis检验,也称为Kruskal-Wallis秩和方差分析或H检验。Kruskal-Wallis不要求总体呈正态分布,但要求总体方差相等,为连续总体,各组效应相互独立,所有样本来自随机抽样,利用秩和来推断样本所在总
- 关于图的算法
J大空
求最短路径(迪杰斯特拉算法)https://www.jianshu.com/p/ff6db00ad866图的最小生成树算法(Prim和Kruskal)https://www.jianshu.com/p/2ffe1c2e15ff导航路径规划算法(A-star算法):https://blog.csdn.net/autonavi2012/article/details/80923431
- P3366 【模板】最小生成树(Prim算法)
爱跑步的程序员~
刷题算法图论
Problem:P3366【模板】最小生成树文章目录思路解题方法复杂度Code思路这是一个求最小生成树的问题。给定一个无向图,需要找到连接所有节点的最小权重边集合。如果图不连通,则输出"orz"。最小生成树是一棵包含图中所有节点的树,且树中的边的权重之和最小。常用的算法有Prim算法和Kruskal算法。解题方法本题可以使用Prim算法来解决。Prim算法的基本思想是从一个起始节点开始,每次选择一
- 最小生成树 —— Prim 和 Kruskal 算法
CharlesWu123
数据结构与算法数据结构与算法最小生成树PrimKruskal
最小生成树定义生成树:连通图包含全部顶点的一个极小连通子图最小生成树:对于带权无向连通图G=(V,E),G的所有生成树当中边的权值之和最小的生成树为G的最小生成树(MST)性质最小生成树不一定唯一,即最小生成树的树形不一定唯一。当带权无向连通图G的各边权值不等时或G只有节点数减1条边时,MST唯一最小生成树的权值是唯一的,且是唯一的最小生成树的边数为顶点数减1算法Prim算法适用于稠密图,Krus
- 最小生成树——Prim/Kruskal Python
volcanical
算法pythonpython算法开发语言
最小生成树从一个图中,生成一个权重最小的生成树Prim朴素版O(n2)O(n^2)O(n2)稠密图不断重复以下过程:选择与当前集合距离最近的点,加入集合拓展当前集合和Dijsktra的思想类似,每次拓展与当前集合最近的点(而不再是原点)对应的唯一区别就是forjinrange(1,n+1):dis[j]=min(dis[j],g[t][j])在Prim里是直接取g[t][j],而dijsktra是
- 统计 假设检验 显著性差异
73826669
#统计数学
假设检验的显著性差异检验主要是用来比较两组或多组数据中,是否每组数据对结果的影响基本一致。换言之,这是用来判断每组数据代表的因素中,是否有主要影响因素。大致思路是先检验各组数据是否有显著性差异,再进行事后分析找出有显著差异的因素文章目录w检验Levene检验显著性检验单向方差分析(F检验)Kruskal-WallisH检验事后分析方差齐性方差不齐w检验W检验全称Shapiro-Wilk检验,是一种
- 寒假思维训练day19
嘗_
算法
更新一道div3的F和做出来过的一道类似这个F的icpc铜牌题,美赛以后的第一篇。题目链接,有需自取:div3F链接:Problem-F-CodeforcesicpcAsiamacau铜牌题Problem-K-Codeforces摘要Part1div3F的题意、题解、代码(C++)Part22021icpcmacau铜牌题的题意、题解、代码(C++)Part3回顾求倍增dp求Lca和kruskal
- Kruskal算法
青年之家
algorithms算法
Kruskal算法问题描述算法简析代码问题描述有一张nnn个顶点、mmm条边的无向图,且是连通图,求最小生成树。算法简析KruskalKruskalKruskal是一种求最小生成树的算法。设该图为G=(V,E)G=(V,E)G=(V,E)。最小生成树即所求为GT=(VT,ET)G_T=(V_T,E_T)GT=(VT,ET),因为图是连通的,所以最小生成树会覆盖所有的顶点,即V==VTV==V_TV
- 音乐故事:《Take Me Home,Country Roads》,乡村路带我回家
凯西
《TakeMeHome,CountryRoads》创作于1971年,使约翰一跃成为著名乡村音乐歌星。歌曲旋律轻快,给人描绘了一幅美丽的美国东部西弗吉尼亚风光。这乡村路非同寻常,它连接了山村与外边的世界。它把游子送出深山,又把游子带回家园。《乡村路带我回家》(TakeMeHome,CountryRoad)是由JohnDenver作词,JohnDenver、BillDanoff、TaffyNivert
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟