hdu 5157 回文树

Harry and magic string

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 147    Accepted Submission(s): 72


Problem Description
Harry got a string T, he wanted to know the number of T’s disjoint palindrome substring pairs. A string is considered to be palindrome if and only if it reads the same backward or forward. For two substrings of  T:x=T[a1b1],y=T[a2b2](where a1 is the beginning index of  x,b1 is the ending index of x.  a2,b2 as the same of y), if both x and y are palindromes and  b1<a2 or b2<a1 then we consider (x, y) to be a disjoint palindrome substring pair of T.
 

Input
There are several cases.
For each test case, there is a string T in the first line, which is composed by lowercase characters. The length of T is in the range of [1,100000].
 

Output
For each test case, output one number in a line, indecates the answer.
 

Sample Input
 
   
aca aaaa
 

Sample Output
 
   
3 15
Hint
For the first test case there are 4 palindrome substrings of T. They are: S1=T[0,0] S2=T[0,2] S3=T[1,1] S4=T[2,2] And there are 3 disjoint palindrome substring pairs. They are: (S1,S3) (S1,S4) (S3,S4). So the answer is 3.
 

Source
BestCoder Round #25
 

Recommend
heyang   |   We have carefully selected several similar problems for you:   5426  5425  5424  5423  5422 


反着构造一遍回文树,通过每个节点的后缀包含的回文串数目(称其为prenum值)求前缀和得到反向字符串的前i位包含的回文串数目,再正着构造一遍回文树,在用每个节点的prenum值乘上这个节点右侧的回文串数目,求和即可。


#include 
#include 
#include 
#include 
#include 
#include 

#define M 110
#define N 110000
using namespace std;

class Node
{
public:
    int pre, next[30], len, prenum, num;
    void setValue(int _len)
    {
        len = _len;
        pre = 0;
        memset(next, 0, sizeof next);
        prenum = 0;
        num = 0;
    }
};
Node node[N];

char str[N], s[N];
int preNum[2][N];
long long preSum[N];
class PaliTree
{
public:
    int cnt, root0, root1, last, n;
    int newNode(int _len)
    {
        node[++cnt].setValue(_len);
        return cnt;
    }
    void init()
    {
        cnt = -1; n = 0;
        str[0] = -1;
        root0 = newNode(0);
        root1 = newNode(-1);
        node[root0].pre = root1;
        node[root1].pre = root0;
        last = root0;
    }
    int nextNode(int p)
    {
        for(; str[n-node[p].len-1] != str[n]; p = node[p].pre);
        return p;
    }
    void extend(char cc, int* a)
    {
        int ch = cc-'a';
        str[++n] = ch;

        int p = nextNode(last);
        int nxt = node[p].next[ch];
        if(!nxt)
        {
            nxt = newNode(node[p].len+2);
            node[nxt].pre = node[nextNode(node[p].pre)].next[ch];
            node[p].next[ch] = nxt;
            node[nxt].prenum = node[node[nxt].pre].prenum+1;
        }
        last = nxt;
        node[last].num++;
        a[n] = node[last].prenum;
    }
};
PaliTree tree;
int main()
{
	//freopen("C:\\Users\\zfh\\Desktop\\in.txt", "r", stdin);
    while(scanf(" %s", s) != -1)
    {
        tree.init();
        int len = strlen(s);
        for(int i = 0; i < len; i++)
        {
            tree.extend(s[i], preNum[0]);
        }
        tree.init();
        for(int i = len-1; i >= 0; i--)
        {
            tree.extend(s[i], preNum[1]);
        }
        preSum[1] = preNum[1][1];
        for(int i = 2; i <= len; i++)
        {
            preSum[i] = preSum[i-1]+preNum[1][i];
        }
        long long ans = 0;
        for(int i = 1; i <= len; i++)
        {
            ans += preNum[0][i]*preSum[len-i];
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


你可能感兴趣的:(回文树)