open_vins/ov_eval 中评估工具的简单用法说明
阅读之前应该先过一遍[1],并且最好将轨迹数据组织成 [1] 中建议的形式,不然 error_* 几个包用起来会比较麻烦
作用:收集算法计算结果存储到 txt 文件中
订阅算法输出位姿的 topic 转成 asl 格式存储,目前支持的 topic 消息类型包括:PoseWithCovarianceStamped
, PoseStamped
, TransformStamped
, Odometry
usage:
<node name="recorder_estimate" pkg="ov_eval" type="pose_to_file" output="screen">
<param name="topic" type="str" value="/ov_msckf/poseimu" />
<param name="topic_type" type="str" value="PoseWithCovarianceStamped" />
<param name="output" type="str" value="/home/user/data/traj_log.txt" />
node>
作用:将 csv 格式的 ground truth 转成 txt 格式存储(直接提取 csv 文件的前八个字段,一般是 time(ns),px,py,pz,qw,qx,qy,qz,转成 time(s) x y z qx qy qz qw)
目前不支持指定输出文件名
usage:
rosrun ov_eval format_convert
rosrun ov_eval format_convert
作用:读取每个 algo 在各个 dataset 中的多次运行结果,分别计算 ATE 和 RPE 并进行平均以减少算法随机性的影响
# 伪代码
for (algo: folder_algorithms):
for (datasets: folder_groundtruth):
for (entry: est_runs):
calc ATE, RPE for this run
calc avg ATE, RPE
plot RPE
usage:
rosrun ov_eval error_comparison
example:
这里图方便,用的数据是 plot_trajectories example 中不同参数配置运行两次的轨迹数据,实际使用时应该是算法相同参数配置的多次运行结果,然后计算算法在不同数据集上的平均 ATE 和 RPE
#:~/workspace/evaluation$ rosrun ov_eval error_comparison se3 truth/ algorithm/
[ INFO] [1576766051.044753308]: [COMP]: 2895 poses in V1_01_easy.txt => length of 88.86 meters
[ INFO] [1576766051.044834098]: ======================================
[ INFO] [1576766051.044844135]: [COMP]: processing openvins algorithm
[ INFO] [1576766051.044866408]: [COMP]: processing openvins algorithm => V1_01_easy dataset
[ INFO] [1576766051.062312797]: [TRAJ]: q_ESTtoGT = -0.002, -0.007, 0.012, 1.000 | p_ESTinGT = -0.057, -0.006, 0.061 | s = 1.00
[ INFO] [1576766051.113728335]: [TRAJ]: q_ESTtoGT = -0.001, -0.003, 0.006, 1.000 | p_ESTinGT = -0.001, 0.017, 0.032 | s = 1.00
[ INFO] [1576766051.150436822]: ATE: mean_ori = 0.789 | mean_pos = 0.064
[ INFO] [1576766051.150457502]: ATE: std_ori = 0.344 | std_pos = 0.015
[ INFO] [1576766051.150875183]: RPE: seg 8 - median_ori = 0.5668 | median_pos = 0.0733 (5056 samples)
[ INFO] [1576766051.151253228]: RPE: seg 16 - median_ori = 0.6465 | median_pos = 0.0802 (4762 samples)
[ INFO] [1576766051.151601656]: RPE: seg 24 - median_ori = 0.6177 | median_pos = 0.0798 (4532 samples)
[ INFO] [1576766051.151922544]: RPE: seg 32 - median_ori = 0.6442 | median_pos = 0.0803 (4248 samples)
[ INFO] [1576766051.152224301]: RPE: seg 40 - median_ori = 0.5605 | median_pos = 0.0793 (4056 samples)
[ INFO] [1576766051.152525008]: RPE: seg 48 - median_ori = 0.6697 | median_pos = 0.0992 (4002 samples)
[ INFO] [1576766051.152628426]: ============================================
[ INFO] [1576766051.152639002]: ATE LATEX TABLE
[ INFO] [1576766051.152647772]: ============================================
& \textbf{V1\_01\_easy} & \textbf{Average} \\\hline
openvins & 0.825 / 0.065 & 0.825 / 0.065 \\
[ INFO] [1576766051.152724334]: ============================================
[ INFO] [1576766051.152748060]: ============================================
[ INFO] [1576766051.152755649]: RPE LATEX TABLE
[ INFO] [1576766051.152763121]: ============================================
& \textbf{8m} & \textbf{16m} & \textbf{24m} & \textbf{32m} & \textbf{40m} & \textbf{48m} \\\hline
openvins & 0.567 / 0.073 & 0.647 / 0.080 & 0.618 / 0.080 & 0.644 / 0.080 & 0.561 / 0.079 & 0.670 / 0.099 \\
[ INFO] [1576766051.154778380]: ============================================
作用:读取每个 algo 在数据集 file_gt 上的多次运行结果,计算平均 RMSE, NEES 并 plot 出来
# 伪代码
for (algo: folder_algorithms):
for (entry: file_gt_est_runs):
calc ATE, RMSE, NEES, RPE for this run
calc avg ATE, RMSE, NEES, RPE
usage:
rosrun ov_eval error_dataset
example:
#:~/workspace/evaluation$ rosrun ov_eval error_dataset se3 truth/V1_01_easy.txt algorithm/
[ INFO] [1576770212.761728847]: [COMP]: 2895 poses in V1_01_easy => length of 88.86 meters
[ INFO] [1576770212.761802180]: ======================================
[ INFO] [1576770212.761811845]: [COMP]: processing openvins algorithm
[ INFO] [1576770212.778955461]: [TRAJ]: q_ESTtoGT = -0.002, -0.007, 0.012, 1.000 | p_ESTinGT = -0.057, -0.006, 0.061 | s = 1.00
[ INFO] [1576770212.824914368]: [TRAJ]: q_ESTtoGT = -0.001, -0.003, 0.006, 1.000 | p_ESTinGT = -0.001, 0.017, 0.032 | s = 1.00
[ INFO] [1576770212.854617295]: ATE: mean_ori = 0.789 | mean_pos = 0.064
[ INFO] [1576770212.854633071]: ATE: std_ori = 0.34366 | std_pos = 0.01492
[ INFO] [1576770212.855156461]: RPE: seg 7 - mean_ori = 0.625 | mean_pos = 0.079 (5056 samples)
[ INFO] [1576770212.855710004]: RPE: seg 14 - mean_ori = 0.703 | mean_pos = 0.089 (4866 samples)
[ INFO] [1576770212.856209657]: RPE: seg 21 - mean_ori = 0.648 | mean_pos = 0.082 (4562 samples)
[ INFO] [1576770212.856619918]: RPE: seg 28 - mean_ori = 0.788 | mean_pos = 0.086 (4404 samples)
[ INFO] [1576770212.856968166]: RPE: seg 35 - mean_ori = 0.806 | mean_pos = 0.081 (4114 samples)
[ INFO] [1576770212.857712285]: RMSE: mean_ori = 0.785 | mean_pos = 0.062
[ INFO] [1576770212.858345127]: NEES: mean_ori = 249.988 | mean_pos = 3.516
[ INFO] [1576770213.600225289]: ============================================
作用:计算算法单次运行的 ATE, RPE, RMSE, NEES, pose error(3 σ \sigma σ) 并 plot 出来
usage:
rosrun ov_eval error_singlerun
example:
#:~/workspace/evaluation$ rosrun ov_eval error_singlerun se3 truth/V1_01_easy.txt algorithm/openvins/V1_01_easy/V1_01_easy_with_fej.txt [ INFO] [1576771884.967577101]: [COMP]: 2895 poses in V1_01_easy => length of 88.86 meters
[ INFO] [1576771884.986044187]: [TRAJ]: q_ESTtoGT = -0.001, -0.003, 0.006, 1.000 | p_ESTinGT = -0.001, 0.017, 0.032 | s = 1.00
[ INFO] [1576771884.987516831]: ======================================
[ INFO] [1576771884.987530199]: Absolute Trajectory Error
[ INFO] [1576771884.987537555]: ======================================
[ INFO] [1576771884.987545627]: rmse_ori = 0.546 | rmse_pos = 0.053
[ INFO] [1576771884.987552179]: mean_ori = 0.500 | mean_pos = 0.049
[ INFO] [1576771884.987562900]: min_ori = 0.088 | min_pos = 0.007
[ INFO] [1576771884.987587484]: max_ori = 1.170 | max_pos = 0.114
[ INFO] [1576771884.987614409]: std_ori = 0.219 | std_pos = 0.021
[ INFO] [1576771885.016880370]: ======================================
[ INFO] [1576771885.016918771]: Relative Pose Error
[ INFO] [1576771885.016927608]: ======================================
[ INFO] [1576771885.016958790]: seg 8 - median_ori = 0.477 | median_pos = 0.061 (2537 samples)
[ INFO] [1576771885.016967589]: seg 16 - median_ori = 0.490 | median_pos = 0.063 (2390 samples)
[ INFO] [1576771885.016973352]: seg 24 - median_ori = 0.401 | median_pos = 0.055 (2275 samples)
[ INFO] [1576771885.016991515]: seg 32 - median_ori = 0.524 | median_pos = 0.068 (2133 samples)
[ INFO] [1576771885.016996569]: seg 40 - median_ori = 0.485 | median_pos = 0.072 (2037 samples)
[ INFO] [1576771885.738522828]: ======================================
[ INFO] [1576771885.738555197]: Normalized Estimation Error Squared
[ INFO] [1576771885.738569322]: ======================================
[ INFO] [1576771885.738587745]: mean_ori = 116.577 | mean_pos = 2.144
[ INFO] [1576771885.738601671]: min_ori = 0.133 | min_pos = 0.032
[ INFO] [1576771885.738615847]: max_ori = 602.480 | max_pos = 8.555
[ INFO] [1576771885.738630077]: std_ori = 105.535 | std_pos = 1.730
[ INFO] [1576771885.738642262]: ======================================
TODO: simulation run 还没看
usage:
rosrun ov_eval error_simulation
作用:将 pid_ros.py 记录的 node 资源占用情况 plot 出来
usage:
rosrun ov_eval timing_singlerun
example:
#:~/workspace/evaluation$ rosrun ov_eval timing_singlerun algorithm/openvins/V1_01_easy/time_12201241.txt
[ INFO] [1576774538.772421057]: [TIME]: loaded 46 timestamps from file!!
TODO: 还没用过,看代码应该是读取多个 algo 的多次运行结果并计算平均资源占用
usage:
rosrun ov_eval timing_comparison
作用:将 ground truth 与 file_est 轨迹对齐之后把轨迹 plot 出来,目前是两个 2d 图(x-y, t-z)
usage:
rosrun ov_eval plot_trajectories ...
看代码目前应该只支持 5 个 file_est,因为画路径的颜色只定义了 6 种。。
align_mode:
example: