没看懂,先记着
https://www.cnblogs.com/sun-of-Ice/p/9330352.html(转)
typedef long long ll;
ll mod;
ll qpow(ll a, ll n)//计算a^n % mod
{
ll re = 1;
while(n)
{
if(n & 1)//判断n的最后一位是否为1
re = (re * a) % mod;
n >>= 1;//舍去n的最后一位
a = (a * a) % mod;//将a平方
}
return re % mod;
}
struct matrix//定义一个结构体,方便传递值
{
int m[maxn][maxn];
};
/*
maxn和mod由全局定义,其中mod根据需要可以省去
*/
matrix mat_multi(matrix a, matrix b)//矩阵求积
{
matrix ans;
for(int i = 0;i < maxn;i++)
{
for(int j = 0;j < maxn;j++)
{
ans.m[i][j] = 0;
for(int k = 0;k < maxn;k++)
{
ans.m[i][j] += (a.m[i][k] % mod * b.m[k][j] % mod) % mod;
ans.m[i][j] %= mod;
}
}
}
return ans;
}
matrix mat_quickpow(matrix a, int n)//矩阵快速幂
{
matrix ans;
for(int i = 0;i < maxn;i++)
{
for(int j = 0;j < maxn;j++)
{
if(i == j)
ans.m[i][j] = 1;
else
ans.m[i][j] = 0;//这里要初始化为单位矩阵,类比普通快速幂这里初始化为1
}
}
while(n != 0)//方法与普通快速幂相同,只有乘法的实现不同
{
if(n & 1)
ans = mat_multi(a, ans);
a = mat_multi(a, a);
n >>= 1;
}
return ans;
}