容斥原理——经典例题(组合数学)

一.容斥原理

就是人们为了不重复计算重叠部分,想出的一种不重复计算的方法。

先来认识一下这两个符号:\bigcap\bigcup(如图)

容斥原理——经典例题(组合数学)_第1张图片

蓝色的圈就是c1\bigcapc2,红色的圈围起来的就是c1\bigcupc2

二.例题:组合数学

1.题目

1.1.题目描述

八是个很有趣的数字啊。八=发,八八=爸爸,88=拜拜。当然最有趣的还是8用二进制表示是1000。怎么样,有趣吧。当然题目和这些都没有关系。 某个人很无聊,他想找出[a,b]中能被8整除却不能被其他一些数整除的数。

1.2.输入

第一行一个数n,代表不能被整除的数的个数。 第二行n个数,中间用空格隔开。 第三行两个数a,b,中间一个空格。 a < =b < =1000000000

1.3.输出

一个整数,为[a,b]间能被8整除却不能被那n个数整除的数的个数。

1.4.样例输入

3

7764 6082 462

2166 53442

1.5.样例输出

6378

1.6.提示

对于30%的数据, 1 ≤n ≤5,1 ≤a ≤ b ≤ 100000。
对于100%的数据,1 ≤ n ≤15,1 ≤ a ≤ b ≤ 10^9,N个数全都小于等于10000大于等于1。

 2.思路

这道题一看就是用容斥原理做吧,如果我们用ans表示答案,用B表示a到b的范围内可以被8整除的所有数,用E表示a到b范围内的所有数,Ai表示那n个要求不能整除的数,可以想到公式:

ans=B\bigcap (E-A_{1}\bigcup A_{2}\bigcup A_{3}\bigcup......\bigcup A_{n} )

它的意义就是:所有范围内的数减去所有能被那n个数整除的数与所有范围内能被8整除的数的并集

好,那么我们现在的问题就是如何求这些并集。(注意求两个数的并集就是求两个数的最小公倍数)

先举一个例子:假如有两个要求不被整除的数(如图,那两个数分别为1号圈和2号圈):

容斥原理——经典例题(组合数学)_第2张图片

那么,ans=8-8\bigcap 1+8\bigcap 1\bigcap 2-8\bigcap 2也就是:ans=8-①-②+②-②-③ 

再来一个稍复杂的:

容斥原理——经典例题(组合数学)_第3张图片

继续像例子1这样推:

ans=8-8\bigcap 6082+ 8\bigcap 6082\bigcap 462-8\bigcap 6082\bigcap 462\bigcap 7764+8\bigcap 6082\bigcap 7764-8\bigcap 462+8\bigcap 462\bigcap 7764-8\bigcap 7764

说人话,就是:ans=8-(①+⑤+④+②)+(②+④)-(④)+(④+⑤) -(③+②+④)+(④) -(④+⑤+⑥) 

可化简为:ans=8-①-②-④-③-⑤-⑥,就是我们想要求的答案了。大家可以发现,我打了下划线的部分是各个完整的部分,分别是8与其他数分别第一次并集

然后8与这个数并集之后,又依次与其他的数继续并集,并且不重不漏,还有,在一个完整的部分里第奇数次并集相减,第偶数次相加,如:ans=8-(①+⑤+④+②)+(②+④)-(④)+(④+⑤) -(③+②+④)+(④) -(④+⑤+⑥) 

从8的集合开始,第0次加上8的集合内的所有数,到8\bigcap 6082开始第1次-(①+⑤+④+②)相减,第2次(②+④)相加,然后发现不能再并下去了,又回到8\bigcap 6082,开始新的第1次-(),第2次(④+⑤),发现也不能再走下去了,就到了8\bigcap 462,继续走下去就走完了。所以,这就是一个递归进行的过程,一个深搜就完事了。

void dfs (int k, int Index, LL v){//k代表第几次并集,Index代表到了第几个集合,v代表这个集合,如v=8,就代表8的倍数这个集合
    if (v > b)//超出范围就没有意义
        return ;
    if (k % 2 == 0)//第偶数次加,第基数次减
        ans += b / v - a / v;
    else
        ans -= b / v - a / v;
    for (int i = Index + 1; i <= n; i ++){
        LL t = lcm (v, m[i]);//求着两个集合的并集
        dfs (k + 1, i, t);//递归求解
    }
}

3.代码

#include 
#include 
#include 
using namespace std;
#define LL long long
int n, m[130], a, b;
LL ans;
LL gcd (LL a, LL b){//最大公因数
    if (! b)
        return a;
    return gcd (b, a % b);
}
LL lcm (LL a, LL b){//最小公倍数
    return a * b / gcd (a, b);
}
void dfs (int k, int Index, LL v){//k代表第几次并集,Index代表到了第几个集合,v代表这个集合,如v=8,就代表8的倍数这个集合
    if (v > b)//超出范围就没有意义
        return ;
    if (k % 2 == 0)//第偶数次加,第基数次减
        ans += b / v - a / v;
    else
        ans -= b / v - a / v;
    for (int i = Index + 1; i <= n; i ++){
        LL t = lcm (v, m[i]);//求着两个集合的并集
        dfs (k + 1, i, t);//递归求解
    }
}
int main (){
    scanf ("%d", &n);
    for (int i = 1; i <= n; i ++)
        scanf ("%d", &m[i]);
    scanf ("%d %d", &a, &b);
    dfs (0, 0, 8);//从第0次开始
    printf ("%lld\n", ans);
    return 0;
}

4.感想

这道题的深搜是最考验人的,有时候只要带一些例子进去算一下就豁然开朗了。

你可能感兴趣的:(数论)