- 数学基础 -- 三明治定理(夹逼定理)
sz66cm
算法数学
三明治定理三明治定理(SandwichTheorem)又称夹逼定理或夹逼准则,是数学分析中的一个重要定理。它描述了当三个函数在某一区间上满足特定关系时,中间函数的极限可以通过两个外侧函数的极限确定。这个定理广泛应用于极限和连续性的证明中。具体来说,设aaa是一个实数或无穷大,假设在aaa的某个去心邻域上,三个函数f(x)f(x)f(x)、g(x)g(x)g(x)和h(x)h(x)h(x)满足以下关
- 数学基础 -- 洛必达法则
sz66cm
机器学习人工智能高等数学微积分
洛必达法则洛必达法则(L’Hôpital’sRule)是微积分中的一个重要定理,用于求解某些未定形式极限的问题。其基本思想是通过求导来简化极限计算。洛必达法则主要用于处理以下两种未定形式的极限:00\frac{0}{0}00和∞∞\frac{\infty}{\infty}∞∞。洛必达法则的公式假设函数f(x)f(x)f(x)和g(x)g(x)g(x)在某一开区间内可导,且在该区间内g′(x)≠0g
- 数学基础 -- 泰勒展开式
sz66cm
高等数学导数微积分
泰勒展开泰勒展开是将一个函数在某点附近展开成幂级数的工具。具体来说,对于一个在某点aaa处具有nnn阶导数的函数f(x)f(x)f(x),其泰勒展开式为:f(x)=f(a)+f′(a)(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+⋯+f(n)(a)n!(x−a)n+Rn(x)f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\f
- 全面解析物联网信息安全知识体系
无声远望
本文还有配套的精品资源,点击获取简介:本资料集详细介绍物联网信息安全的多个重要方面,包括基础概念、数学基础、数据安全与隐私保护、集成安全技术、安全分析、防护策略和身份认证。从基本的物联网安全概念到深度探讨密码学基础,再到数据保护技术,再到全面的系统安全设计,安全分析,防御措施以及身份验证技术,这些内容将为研究者、开发者和管理者提供物联网安全的全面视角。1.物联网信息安全基础概念在现代技术不断发展的
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- VMD(变分模态分解)详解
DuHz
波的分析方法现代谱分析方法音频处理数据挖掘信号处理人工智能信息与通信数学建模
VMD(变分模态分解)详解目录前言背景及发展VMD原理与数学基础问题的提出变分框架与能量最小化中心频率与带宽定义目标函数及约束拉格朗日乘子法频域迭代更新公式VMD与EMD/EEMD/CEEMDAN等方法比较VMD算法流程主要参数的选择与影响优点与不足实际应用中需要注意的问题示例代码代码简要解读参考资料前言在信号处理、时频分析、故障诊断等诸多领域,如何将一个复杂信号进行多分量分解,进而提取到其中所包
- 人工智能之数学基础:一个小例子帮你快速搞懂极大线性无关向量组
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能线性代数机器学习极大线性无关向量组深度学习神经网络
本文重点在上一节课程中,我们学习了线性相关和线性无关。当线性相关的时候,那么说明这组向量至少存在一个向量可以被其它向量给表示,可以被表示就说明这个向量就是可有可无的,可以被替代的,这里就涉及到极大线性无关向量组的概念了,本文对此进行学习。极大无关向量组的定义与性质定义在线性空间中,如果存在一个向量组,它满足以下两个条件:一是它本身是线性无关的;二是向量空间中的任何包含它的向量组,如果仍然保持线性无
- 机器算法之逻辑回归(Logistic Regression)详解
HappyAcmen
算法合集算法逻辑回归机器学习
一、什么是逻辑回归?逻辑回归并不是传统意义上的回归分析,而是一种用于处理二分类问题的线性模型。它通过计算样本属于某一类别的概率来进行分类,尽管名字中有“回归”二字,但它实际上是一种分类算法。简单来说,逻辑回归回答的是“这件事发生的可能性有多大”。二、逻辑回归的基本原理在讲原理之前,我们先来了解一下逻辑回归的数学基础。逻辑回归的核心是一个Logistic函数(或称为Sigmoid函数),它的公式如下
- 机器学习数学基础-定积分应用-经济问题
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分算法
定积分在经济学中的应用广泛,特别是用来解决与累积量、平均值、总收入、成本、利润等相关的问题。以下是定积分在经济学中的几个常见应用场景:1.总收入和总成本的计算在经济学中,定积分常用于计算总收入、总成本等累积量。如果给定价格函数和需求函数或供应函数,定积分可以帮助我们计算从某一数量到另一数量之间的总收入或总成本。总收入:假设某商品的价格随数量的变化而变化,价格函数为(p(x)),其中(x)表示销售的
- 区块链的数学基础:核心原理与应用解析
一休哥助手
区块链
引言区块链技术作为分布式账本系统,成功地解决了传统中心化系统中的信任问题。其背后隐藏着复杂而精妙的数学原理,包括密码学、哈希函数、数字签名、椭圆曲线、零知识证明等。这些数学工具不仅为区块链提供了安全保障,也为智能合约和去中心化应用(DApps)的开发奠定了基础。本文将深入剖析区块链中的核心数学基础,帮助读者理解其工作原理与实际应用。一、区块链数学基础概述区块链的数学基础可以分为以下几个核心领域:密
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 机器学习数学基础-极值和最值
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分机器学习算法人工智能
极值和最值极值和最值是数学中关于函数变化的重要概念,它们描述了函数在某些点附近或在整个定义域内的“最大”或“最小”行为。理解极值和最值对优化问题、函数分析、物理建模等领域有重要的应用。1.极值(LocalExtrema)极值是指函数在某个区间内的某一点取得的局部最大值或最小值。(1)局部最大值(LocalMaximum)一个函数在某点(x=c)取得局部最大值,意味着存在一个包含(c)的小区间,使得
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 群体遗传分析(一)#学习笔记
kangroomoon
哈温的遗传平衡定律是基础,费、莱、霍的群体遗传学是数学基础和理论框架,木村资生的中性进化论深化了自然选择的概念。中性学说认为:分子水平上的遗传变异在很大程度上是中性的,变异程度主要由突变速率和有效群体大小决定。(通过观察值和理论值之间的差异性测验中性进化假说)群体遗传多态性与结构分析Locus:遗传座位,在群体中通常包含多个allele:等位基因,即遗传多态性。大多数的新突变是由于geneticd
- 几何分布的期望和方差公式推导_算法数学基础-统计学最基础之均值、方差、协方差、矩...
weixin_39848097
几何分布的期望和方差公式推导均值定理六个公式概率论方差公式
我们天天都可以接触很多随机现象,比如每天的天气不一样气温是我们最直接的感受,我们很难预测明天的精确问题,但是这些随机现象又体现出了一定的规律性。比如上海7月份平均35度左右,冬天的平均温度在5度左右。所以35、5这些数字体现了某种稳定性。所以除了前面几章中讲到的分布律和概率密度函数可以表征随机变量外,还可以用一组数字来表达随机变量的一般特性。这就是我们今天要讲到的随机变量的数字特征。通过对数字特征
- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- 数学基础 -- 线性代数之矩阵的迹
sz66cm
线性代数机器学习决策树
矩阵的迹什么是矩阵的迹?矩阵的迹(TraceofaMatrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。矩阵迹的定义对于一个n×nn\timesnn×n的方阵AAA:A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann)A=\begin{pmatrix}a_{1
- 数学基础 -- 线性代数之矩阵正定性
sz66cm
线性代数矩阵
线性代数中的正定性正定性在线性代数中主要用于描述矩阵的特性,尤其是在二次型与优化问题中有重要应用。正定矩阵的定义对于一个n×nn\timesnn×n的对称矩阵AAA,其正定性可以通过以下条件来判断:正定矩阵:如果对于任意非零向量x∈Rnx\in\mathbb{R}^nx∈Rn,二次型xTAxx^TAxxTAx都是正的,即:xTAx>0∀x∈Rn,x≠0x^TAx>0\quad\forallx\in
- 想学java,需要什么基础?
吹来人间烟火
不需要什么基础,课程都是针对于零基础的同学,设计这个行业,本身入行门槛比较低,能力重于学历。真正科班出身的更是少数,大部分人都是通过找培训机构系统学习出来的,所以只要自己下定决心去学,就一定能学会的。另外,如果说普通人具备哪些能力可以更好地学习Java,那可以列出来三点。1、简单的英语读写能力;2、一定的数学基础;3、一定的计算机基础操作能力。Java是一门面向对象地编程语言,吸收了C++语言的各
- 数学基础 -- 线性代数之酉矩阵
sz66cm
量子计算线性代数
酉矩阵(UnitaryMatrix)酉矩阵是线性代数中一种重要的矩阵类型,特别在量子力学和信号处理等领域有广泛的应用。以下是酉矩阵的定义、性质以及使用和计算的例子。1.定义酉矩阵是一个复矩阵UUU,满足以下条件:U†U=UU†=IU^{\dagger}U=UU^{\dagger}=IU†U=UU†=I其中:U†U^{\dagger}U†是矩阵UUU的共轭转置矩阵,即UUU的转置矩阵再取元素的共轭。
- 深度学习奥秘解锁:AI大模型技能提升指南
AGI大模型老王
人工智能深度学习语言模型算法大模型AI大模型
文章目录每日一句正能量前言AI大模型学习的理论基础AI大模型的训练与优化AI大模型在特定领域的应用AI大模型学习的伦理与社会影响未来发展趋势与挑战后记**前言**随着人工智能技术的快速发展,AI大模型学习正成为一项备受关注的研究领域。为了提高模型的准确性和效率,研究者们需要具备深厚的数学基础和编程能力,并对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习正为人类的生活和工
- 数学基础 -- 线性代数之伴随矩阵
sz66cm
线性代数矩阵
伴随矩阵1.代数余子式首先我们需要理解什么是代数余子式。对于一个n×nn\timesnn×n的方阵AAA,代数余子式MijM_{ij}Mij是指从矩阵AAA中删除第iii行和第jjj列后,剩下的子矩阵的行列式。假设有一个3×33\times33×3的矩阵:A=(a11a12a13a21a22a23a31a32a33)A=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_
- 数学基础 -- 线性代数之矩阵的秩
sz66cm
线性代数矩阵机器学习
矩阵的秩:概念与应用1.概述矩阵的秩(Rank)是线性代数中的一个基本概念,它衡量了矩阵中行或列向量的线性无关性。矩阵的秩在解线性方程组、矩阵分解、确定线性变换的维度等方面起着重要作用。2.矩阵的秩的定义矩阵的秩可以从以下几个角度进行定义:行秩:矩阵的行秩是指矩阵中最大线性无关行向量的个数。列秩:矩阵的列秩是指矩阵中最大线性无关列向量的个数。在一个矩阵中,行秩和列秩总是相等的,因此我们通常将矩阵的
- 【ShuQiHere】从零开始实现逻辑回归:深入理解反向传播与梯度下降
ShuQiHere
代码武士的机器学习秘传逻辑回归算法机器学习
【ShuQiHere】逻辑回归是机器学习中一个经典的分类算法,尽管它的名字中带有“回归”,但它的主要用途是处理二分类问题。逻辑回归通过一个逻辑函数(Sigmoid函数)将输入特征映射到一个概率值上,然后根据这个概率值进行分类。本文将带你从零开始一步步实现逻辑回归,并深入探讨背后的核心算法——反向传播与梯度下降。逻辑回归的数学基础逻辑回归的目标是找到一个逻辑函数,能够将输入特征映射到一个(0,1)之
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 【ShuQiHere】《机器学习的进化史『上』:从数学模型到智能算法的百年征程》
ShuQiHere
机器学习人工智能
【ShuQiHere】引言:概述机器学习的演进机器学习的发展史是一段从数学基础到智能算法的演进历程。从19世纪的数学探索,到20世纪的计算革命,再到21世纪的智能算法应用,机器学习模型的演化贯穿了科学进步的每个重要阶段。这篇博客将系统回顾这些模型的历史演进,展示它们之间的联系,并探讨其在现代应用中的重要性。线性回归:机器学习的起点背景故事:1805年的法国,年轻的数学家Adrien-MarieLe
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {