自从约瑟夫·傅立叶于1820年引入求和符号∑(大写的希腊字母sigma)以来,求和∑以及双重求和∑∑在数学公式推导,命题证明中被经常使用,掌握它的定义和性质对于提高我们的数学能力是必不可少的。
注意我们在此只讨论有限项的求和。
结合律:
∑ i = 1 n ( a i + b i ) = ∑ i = 1 n a i + ∑ i = 1 n b i \sum_{i=1}^{n}( a_{i}+b_{i})=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} i=1∑n(ai+bi)=i=1∑nai+i=1∑nbi
分配律:
∑ i = 1 n r a i = r ∑ i = 1 n a i ( r 为 任 意 常 数 ) \sum_{i=1}^{n} r a_{i}=r \sum_{i=1}^{n} a_{i} \quad( r为任意常数) i=1∑nrai=ri=1∑nai(r为任意常数)
从函数角度:
∑ i = 1 10 g ( k , l ) f ( i , j ) = g ( k , l ) ∑ i = 1 10 f ( i , j ) \sum_{i=1}^{10} g(k, l) f(i, j)=g(k, l) \sum_{i=1}^{10} f(i, j) i=1∑10g(k,l)f(i,j)=g(k,l)i=1∑10f(i,j)
g(k, l)是与下标i无关的函数
分段:
∑ i = 1 n a i = ∑ i = 1 m a i + ∑ i = m + 1 n a i \sum_{i=1}^{n} a_{i}=\sum_{i=1}^{m} a_{i}+\sum_{i=m+1}^{n} a_{i} i=1∑nai=i=1∑mai+i=m+1∑nai
有一个n行m列的数表:
a 11 , a 12 , a 13 , ⋯   , a 1 m a 21 , a 22 , a 23 , ⋯   , a 2 m a 31 , a 32 , a 33 , ⋯   , a 2 m ⋯ a n 1 , a n 2 , a n 3 , ⋯   , a n m \begin{array}{l}{a_{11}, a_{12}, a_{13}, \cdots, a_{1 m}} \\ {a_{21}, a_{22}, a_{23}, \cdots, a_{2 m}} \\ {a_{31}, a_{32}, a_{33}, \cdots, a_{2 m}} \\ {\cdots} \\ {a_{n 1}, a_{n 2}, a_{n 3}, \cdots, a_{n m}}\end{array} a11,a12,a13,⋯,a1ma21,a22,a23,⋯,a2ma31,a32,a33,⋯,a2m⋯an1,an2,an3,⋯,anm
数表里的每个元素都由两个相互独立的数i,j决定,即每一项都是i,j的二元函数,一般项为aij ,i = 1,2…n; j = 1,2…m
这n × m项的和记为 ∑ j = 1 m ( ∑ i = 1 n a i j ) \sum_{j=1}^{m}(\sum_{i=1}^{n} a_{ij}) ∑j=1m(∑i=1naij) 或者 ∑ i = 1 n ( ∑ j = 1 m a i j ) \sum_{i=1}^{n}(\sum_{j=1}^{m} a_{ij}) ∑i=1n(∑j=1maij)
第i行的元素的和记为Ri:
R i = ∑ j = 1 m a i j = a i 1 + a i 2 + . . . + a i m R_{i} = \sum_{j=1}^{m} a_{ij} = a_{i1} + a_{i2} + ... + a_{im} Ri=j=1∑maij=ai1+ai2+...+aim
一共有n行,所有行元素的和,即数表所有元素的和记为S:
S = ∑ i = 1 n R i = ∑ i = 1 n ( ∑ j = 1 m a i j ) S = \sum_{i=1}^{n}R_{i} = \sum_{i=1}^{n}(\sum_{j=1}^{m} a_{ij}) S=i=1∑nRi=i=1∑n(j=1∑maij)
第j列的元素的和记为Cj:
C j = ∑ i = 1 n a i j = a 1 j + a 2 j + . . . + a n j C_{j} = \sum_{i=1}^{n} a_{ij} = a_{1j} + a_{2j} + ... + a_{nj} Cj=i=1∑naij=a1j+a2j+...+anj
一共有m列,所有列元素的和,即数表所有元素的和记为S:
S = ∑ j = 1 m C j = ∑ j = 1 m ( ∑ i = 1 n a i j ) S = \sum_{j=1}^{m}C_{j} = \sum_{j=1}^{m}(\sum_{i=1}^{n} a_{ij}) S=j=1∑mCj=j=1∑m(i=1∑naij)
所以 ∑ i = 1 n ( ∑ j = 1 m a i j ) = ∑ j = 1 m ( ∑ i = 1 n a i j ) \sum_{i=1}^{n}(\sum_{j=1}^{m} a_{ij}) = \sum_{j=1}^{m}(\sum_{i=1}^{n} a_{ij}) i=1∑n(j=1∑maij)=j=1∑m(i=1∑naij)
也可以写成 ∑ 1 < = i < = n , 1 < = j < = m a i j \sum_{1<=i<=n,1<=j<=m}a_{ij} ∑1<=i<=n,1<=j<=maij
即二重和的和号(求和次序)可以交换。
但要注意,但求和项数变为无穷或者(一个或两个)和号变为积分号时,往往要求级数收敛或者函数可积,相应的交换和号的结论才能成立。
Example 1
∑ i = 1 4 ∑ j = 1 i f ( i , j ) \sum_{i=1}^{4} \sum_{j=1}^{i} f(i, j) ∑i=14∑j=1if(i,j)交换求和次序后是什么样的呢?
A. ∑ j = 1 i ∑ i = 1 4 f ( i , j ) \sum_{j=1}^{i} \sum_{i=1}^{4} f(i, j) ∑j=1i∑i=14f(i,j)
B. ∑ j = 1 4 ∑ i = 1 j f ( i , j ) \sum_{j=1}^{4} \sum_{i=1}^{j} f(i, j) ∑j=14∑i=1jf(i,j)
C. ∑ j = 1 4 ∑ i = j 4 f ( i , j ) \sum_{j=1}^{4} \sum_{i=j}^{4} f(i, j) ∑j=14∑i=j4f(i,j)
因为[1<= i <= 4][1<= j<= i] = [1<= j <= i <= 4] = [1<= j<= 4][ j <= i <= 4]
所以 选C,也可以穷举出所有元素,如果将i作为行号,j作为列号,对于 ∑ i = 1 4 ∑ j = 1 i f ( i , j ) \sum_{i=1}^{4} \sum_{j=1}^{i} f(i, j) ∑i=14∑j=1if(i,j),你会发现这些元素的排列类似于下三角矩阵的形式(按行求和),然后将按行求和切换为按列求和,也会得到C答案。
Example 2
求 ∑ k = 1 n ∑ i = 1 k i a i j k ( k + 1 ) \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{ ia_{ij}}{k(k + 1)} ∑k=1n∑i=1kk(k+1)iaij交换求和次序后的表达式。
同样的,[1<= k <= n][1<= i<= k] = [1<= i <= k <= n] = [1<= i<= n][ i <= k <= n]
所以, ∑ i = 1 n ∑ k = i n i a i j k ( k + 1 ) \sum_{i=1}^{n} \sum_{k=i}^{n} \frac{ ia_{ij}}{k(k + 1)} ∑i=1n∑k=ink(k+1)iaij,如果将i作为行号,k作为列号,对于 ∑ k = 1 n ∑ i = 1 k i a i j k ( k + 1 ) \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{ ia_{ij}}{k(k + 1)} ∑k=1n∑i=1kk(k+1)iaij ,你会发现这些元素的排列类似于上三角矩阵的形式(按列求和),然后将按列求和切换为按行求和。
Example 3
∑ k = 1 n ( k ( ∑ i = 1 k i 2 a i ) ( 2 k ( k + 1 ) ) 2 ) \sum_{k=1}^{n}(k( \sum_{i=1}^{k}\frac{ i^2}{a_{i}}) (\frac{2}{k(k + 1)})^2) ∑k=1n(k(∑i=1kaii2)(k(k+1)2)2) = 4 ∑ k = 1 n ∑ i = 1 k i 2 a i k k ( k + 1 ) 2 4\sum_{k=1}^{n} \sum_{i=1}^{k}\frac{ i^2}{a_{i}} \frac{k}{k(k + 1)^2} 4∑k=1n∑i=1kaii2k(k+1)2k = 4 ∑ i = 1 n i 2 a i ∑ k = i n k k ( k + 1 ) 2 4\sum_{i=1}^{n}\frac{ i^2}{a_{i}} \sum_{k=i}^{n} \frac{k}{k(k + 1)^2} 4∑i=1naii2∑k=ink(k+1)2k
注意,容易出错的地方
( ∑ i = 1 5 f ( i ) ) 2 = ( ∑ i = 1 5 f ( i ) ) ∗ ( ∑ i = 1 5 f ( i ) ) ≠ ∑ i = 1 5 ∑ i = 1 5 f ( i ) f ( i ) = ∑ i = 1 5 ∑ i = 1 5 f 2 ( i ) \left(\sum_{i=1}^{5} f(i)\right)^{2}=\left(\sum_{i=1}^{5} f(i)\right) *\left(\sum_{i=1}^{5} f(i)\right) ≠ \sum_{i=1}^{5} \sum_{i=1}^{5} f(i) f(i) = \sum_{i=1}^{5} \sum_{i=1}^{5} f^2(i) (∑i=15f(i))2=(∑i=15f(i))∗(∑i=15f(i))̸=∑i=15∑i=15f(i)f(i)=∑i=15∑i=15f2(i)
而是
( ∑ i = 1 5 f ( i ) ) 2 = ( ∑ i = 1 5 f ( i ) ) ∗ ( ∑ i = 1 5 f ( i ) ) = ∑ i = 1 5 ∑ j = 1 5 f ( i ) f ( j ) \left(\sum_{i=1}^{5} f(i)\right)^{2}=\left(\sum_{i=1}^{5} f(i)\right) *\left(\sum_{i=1}^{5} f(i)\right) = \sum_{i=1}^{5} \sum_{j=1}^{5} f(i) f(j) (∑i=15f(i))2=(∑i=15f(i))∗(∑i=15f(i))=∑i=15∑j=15f(i)f(j)
–更详细内容可阅读《具体数学》第二章 和式