我第一次听说 Polya 原理是 NOIP2017 以前,但我觉得太难想着以后再学;
NOIP2018 以前我觉得会考这玩意,下定决心学,后来咕了;
WC2019 以前我觉得会考这玩意,下定决心学,后来咕了;
SNOI2019 以前我觉得会考这玩意,下定决心学,后来咕了;
CTS2019 以前我觉得会考这玩意,下定决心学,后来咕了;
APIO2019 以前我觉得会考这玩意,下定决心学,后来咕了;
THUSC2019 以前我觉得会考这玩意,下定决心学,后来咕了;
今天距离 NOI2019 还有不到一周,我又下定决心学,赶紧抓着 jumpmelon 让他给我讲,然后他两句话就说完了。
摔.jpg
由于 Polya 原理是我临时抱瓜脚学的,所以这篇博客里只有不严谨的结论,严谨了表述和证明什么的 NOI 以后 看心情 再补。
基于上述原因,这篇博客的吐槽环节可能比正文(不含代码)还长
问题:有一个 \(n\) 个点的环和 \(m\) 种颜色,求给每一个点染一种颜色的本质不同的方案数。两种方案本质不同当且仅当它们不能通过旋转互相得到。
结论:方案数是 \(\frac{1}{n}\sum_{i=1}^n m^{\gcd(n,i)}\)
例题:洛谷 4980 Polya 定理
直接套路地推式子就好啦:
\[ \begin{aligned} ans&=\frac{1}{n}\sum_{i=1}^n n^{\gcd(n,i)}\\ &=\frac{1}{n}\sum_{d|n}n^d\sum_{i=1}^{\frac{n}{d}}[gcd(\frac{n}{d},i)=1]\\ &=\frac{1}{n}\sum_{d|n}n^d\varphi(\frac{n}{d}) \end{aligned}\]
给 \(n\) 分解质因子然后按照质因子搜索它的所有因数,搜索时维护一下 \(\varphi\) 就好了
代码:
#include
#include
#include
#include
using namespace std;
namespace zyt
{
template
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
template
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
typedef pair pii;
const int SQRTN = 4e4 + 10, P = 1e9 + 7;
pii prime[SQRTN];
int pcnt, n, ans;
int power(int a, int b)
{
int ans = 1;
while (b)
{
if (b & 1)
ans = (ll)ans * a % P;
a = (ll)a * a % P;
b >>= 1;
}
return ans;
}
int inv(const int a)
{
return power(a, P - 2);
}
void get_prime(int n)
{
pcnt = 0;
for (int i = 2; i * i <= n; i++)
if (n % i == 0)
{
prime[pcnt++] = pii(i, 0);
while (n % i == 0)
++prime[pcnt - 1].second, n /= i;
}
if (n > 1)
prime[pcnt++] = pii(n, 1);
}
void dfs(const int pos, const int mul, const int pmul, const int div)
{
if (pos == pcnt)
{
ans = (ans + (ll)mul / div * pmul * power(n, n / mul)) % P;
return;
}
dfs(pos + 1, mul, pmul, div);
for (int i = 1, tmp = prime[pos].first; i <= prime[pos].second; i++, tmp *= prime[pos].first)
dfs(pos + 1, mul * tmp, pmul * (prime[pos].first - 1), div * (prime[pos].first));
}
int work()
{
int T;
read(T);
while (T--)
{
ans = 0;
read(n);
get_prime(n);
dfs(0, 1, 1, 1);
write((ll)ans * inv(n) % P), putchar('\n');;
}
return 0;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("4980.in", "r", stdin);
#endif
return zyt::work();
}