欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。
通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。
对于质数p,φ(p) = p - 1。注意φ(1)=1.
欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
特殊性质:当n为奇数时,φ(2n)=φ(n)
欧拉函数还有这样的性质:
设a为N的质因数,若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。
代码实现:
#include //欧拉之实现
int ef(int n)
{
int cnt=n;
int i;
for(i=2;i<=n;i++)
if(n%i==0)
{
cnt - =cnt/i; // m-m/p
while(n%i==0)
n/=i;
}
return cnt;
}
int main()
{
int n;int m;
int count;
while(scanf("%d",&m)!=EOF)
{
while(m--){
scanf("%d",&n);
count=ef(n);
printf("%d\n",count);}
}
return 0;
}