【NOIP 2009】靶形数独

【NOIP 2009】靶形数独

题目

题目描述

小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低。但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“靶形数独”,作为这两个孩子比试的题目。

靶形数独的方格同普通数独一样,在 9 格宽×9 格高的大九宫格中有 9 个 3 格宽×3 格高的小九宫格(用粗黑色线隔开的)。在这个大九宫格中,有一些数字是已知的,根据这些数字,利用逻辑推理,在其他的空格上填入 11 到 9 9的数字。每个数字在每个小九宫格内不能重复出现,每个数字在每行、每列也不能重复出现。但靶形数独有一点和普通数独不同,即每一个方格都有一个分值,而且如同一个靶子一样,离中心越近则分值越高。(如图)

【NOIP 2009】靶形数独_第1张图片

上图具体的分值分布是:最里面一格(黄色区域)为 10 分,黄色区域外面的一圈(红色区域)每个格子为 9分,再外面一圈(蓝色区域)每个格子为 8 分,蓝色区域外面一圈(棕色区域)每个格子为 7分,最外面一圈(白色区域)每个格子为 6分,如上图所示。比赛的要求是:每个人必须完成一个给定的数独(每个给定数独可能有不同的填法),而且要争取更高的总分数。而这个总分数即每个方格上的分值和完成这个数独时填在相应格上的数字的乘积的总和
【NOIP 2009】靶形数独_第2张图片
总分数即每个方格上的分值和完成这个数独时填在相应格上的数字的乘积的总和。如图,在以下的这个已经填完数字的靶形数独游戏中,总分数为 2829。游戏规定,将以总分数的高低决出胜负。

由于求胜心切,小城找到了善于编程的你,让你帮他求出,对于给定的靶形数独,能够得到的最高分数。

输入格式

一共 9 行。每行 99个整数(每个数都在 0−9 的范围内),表示一个尚未填满的数独方格,未填的空格用“0”表示。每两个数字之间用一个空格隔开。

输出格式

输出共 1 行。输出可以得到的靶形数独的最高分数。如果这个数独无解,则输出整数−1。

输入输出样例

输入 #1 复制
7 0 0 9 0 0 0 0 1
1 0 0 0 0 5 9 0 0
0 0 0 2 0 0 0 8 0
0 0 5 0 2 0 0 0 3
0 0 0 0 0 0 6 4 8
4 1 3 0 0 0 0 0 0
0 0 7 0 0 2 0 9 0
2 0 1 0 6 0 8 0 4
0 8 0 5 0 4 0 1 2
输出 #1 复制
2829

输入 #2 复制
0 0 0 7 0 2 4 5 3
9 0 0 0 0 8 0 0 0
7 4 0 0 0 5 0 1 0
1 9 5 0 8 0 0 0 0
0 7 0 0 0 0 0 2 5
0 3 0 5 7 9 1 0 8
0 0 0 6 0 1 0 0 0
0 6 0 9 0 0 0 0 1
0 0 0 0 0 0 0 0 6
输出 #2 复制
2852

说明/提示

【数据范围】

40%的数据,数独中非 0 数的个数不少于 30。

80%的数据,数独中非 0 数的个数不少于26。

100%的数据,数独中非 0数的个数不少于 24。

NOIP 2009 提高组 第四题

分析

首先,这道题要先了解数独,不懂的话,有道基础数独题 可以先看下
数独题

这道题,在数独的基础上,增加了每格的分数,其实做法还是基本一样,多了个最后统计分数而已。。

注意:难度的提升,不单单在增加分数,而是超时, 如果按平常数独从 第一行开始,一行一行填如数字,
这样 最后会超时几个点, 所以必须优化。

怎么优化?其实做数独,不是一定要从第一行开始一行一行填,我们可以选择那些已经填好几个数的行开始填入
这样做是因为,已经先填好越多个数,我们那行只需填入的个数就会越少,这样做dfs会很省时间。

那怎么做? 我们先读入数独盘,开个结构体,把每一行有几个数都记下来,然后做sort排序,把数字多的行排在前面。
然后开始做dfs,每次从排序好的第一行开始,填完就从排序好的第二行继续,,,,

说说结构体,需要记录这个行的原本位置是哪,还有这一行有输入时多少数字。
其他与基础数独没差别。。。。。

代码

#include
#include
using namespace std;
#include

int a[10][10];
int vx[10][10],vy[10][10],vc[10][10];
int ans = -1;

struct Node{
	int num,cnt;
}so[10];
bool cmp(Node x,Node y){
	return x.cnt > y.cnt;
}
void dfs(int x,int y){
	int sx = x;
	x = so[sx].num;    //把它原始 行 拿出来 
	if(sx==9){
		int sum=0;
		for(int i=0;i<9;i++){
			for(int j=0;j<9;j++){
				sum += a[i][j] * min(10-abs(i-4),10-abs(j-4));
			}
		}
		ans = max(ans,sum);
		return ;
	}	
//	if(x==9){
//		int sum=0;
//		for(int i=0;i<9;i++){
//			for(int j=0;j<9;j++){
//				sum += a[i][j] * min(10-abs(i-4),10-abs(j-4));
//			}
//		}
//		ans = max(ans,sum);
//	}

	if(y==9){
		dfs(sx+1,0);
		return ;
		
	}
	if(a[x][y]){
		dfs(sx,y+1);
	}else{
		for(int i=1;i<=9;i++){
			if(!vx[x][i] && !vy[y][i] && !vc[x/3*3+y/3][i]){
				vx[x][i] =1;
				vy[y][i] =1; 
				vc[x/3*3+y/3][i] =1;
				a[x][y] = i;
				dfs(sx,y+1);
				
				vx[x][i] =0;
				vy[y][i] =0; 
				vc[x/3*3+y/3][i] =0;
				a[x][y] = 0;
			}
		}
	}
}

int main(){
	for(int i=0;i<9;i++){
		so[i].num = i;
		for(int j=0;j<9;j++){
			cin>>a[i][j];
			if(a[i][j]){
				vx[i][a[i][j]] = 1;
				vy[j][a[i][j]] = 1;
				vc[i/3*3+j/3][a[i][j]] = 1;
				so[i].cnt ++;
				
			}
			
		}
	}
	sort(so,so+9,cmp);
	dfs(0,0);
	cout<

你可能感兴趣的:(NOIP,#,深度搜索)