- 大模型算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
介绍:大模型算法工程师是指在开发和部署复杂的机器学习模型、深度学习模型或其他大规模模型的专业人员。他们的主要职责和技能要求包括:职责:设计、开发和优化大规模机器学习或深度学习模型,解决复杂的业务问题。负责整个模型开发生命周期,包括数据清洗、特征工程、模型选择、训练和部署。与数据科学家、工程团队和产品团队合作,理解业务需求并将算法转化为实际产品。对模型性能进行评估和优化,确保模型的准确性、效率和可扩
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- android hal层编译,Android Hal层接入Opencv(踩坑篇)
古巴比伦
androidhal层编译
文章目录[x]1:尝试接入OpencvAndroidSDK2:寻找问题3:解决方法为了在AOSP的Hal层相机添加图片处理的一些功能。我尝试接入OpenCV4.5.1来实现该功能,本文将介绍接入过程中所遇到的坑和对应的解决方法。尝试接入OpencvAndroidSDK首先,我尝试接入4.5.1版本的AndroidSDK版本,需要将SDK包下的arm32位动态库和arm64位动态库添加到AOSP的模
- 深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
@Mr_LiuYang
计算机视觉基础归一化正则化NormlizationBatchNormLayerNormInstanceNromGroupNorm
深度学习pytorch之22种损失函数数学公式和代码定义深度学习pytorch之19种优化算法(optimizer)解析深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用摘要归一化(Normalization)是提升模型性能、加速训练的重要技巧。归一化方法可以帮助减少梯度消失或爆炸的问题,提升模型的收敛速度,且对最终模型的性能有显著影响。本文将以PyTorc
- 【2025年超全汇总】大模型常见面试题及详细答案解析(非常详细)收藏这一篇就够了!
Cc不爱吃洋葱
人工智能大语言模型语言模型LLM大模型大模型面试大模型算法
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:请简述什么是大模型,以及它与传统模型的主要区别是什么?回答:大模型通常指的是参数数量巨大的深度学习模型,如GPT系列。它们与传统模型的主要区别在于规模:大模型拥有更多的参数和更复杂的结构,从而能够处理更复杂、更广泛的任务。此外,大模型通常需要更多的数据和计算资源进行
- YOLO在PiscTrace上检测到数据分析
那雨倾城
PiscTraceYOLO计算机视觉视觉检测数据分析信息可视化
在现代计算机视觉领域,实时视频数据的检测与分析对于安全监控、交通管理以及智能制造等领域具有重要意义。YOLO(YouOnlyLookOnce)作为一种高效的目标检测算法,能够在保持高精度的同时实现实时检测。而PiscTrace作为一款集成了OpenCV、MiDaS和YOLO技术的桌面应用,为用户提供了全面的图像与视频流处理解决方案。本文将探讨如何利用YOLO进行实时视频数据检测,并结合PiscTr
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 2024 最新计算机视觉学习路线(入门篇)_计算机视觉课程主线
m0_60721823
计算机视觉学习人工智能
Python是机器学习项目中最流行的编程语言之一,因为与Java和C++等其他编程语言相比,它简单易读。Python附带了许多可以加快开发速度的库,其中一些重要的库是OpenCV、TensorFlow、PyTorch等,它们专门用于图像处理相关任务。本文旨在向初学者介绍这一领域,为他们提供有关涉及图像的机器学习应用程序背后概念的基本知识,并从高层次的角度深入了解这些库如何在底层协同工作,以便他们在
- DeepSeek 1.5B 蒸馏模型的征程 6 部署(Llama 方式)
自动驾驶算法
前言DeepSeek是一款基于人工智能的搜索引擎,旨在提升用户的搜索体验。它利用先进的自然语言处理技术,通过理解查询的上下文和意图,为用户提供更精确、相关的搜索结果。与传统的搜索引擎不同,DeepSeek不仅仅依赖于关键词匹配,还能通过深度学习分析用户的需求,呈现更加智能化的搜索结果。此外,DeepSeek还具备语义理解能力,能够处理复杂的查询,并在短时间内给出最符合用户需求的答案。DeepSee
- AI大语言模型概述:从GPT到BERT的技术演进
AI智能涌现深度研究
AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是大语言模型大语言模型是一种基于深度学习的自然语言处理技术,它可以理解和生成人类语言。这些模型通过学习大量的文本数据,捕捉到语言的语法、语义和情感等信息,从而实现对自然语言的理解和生成。1.2为什么大语言模型如此重要大语言模型在近年来取得了显著的进展,它们在各种自然语言处理任务中都取得了最先进的性能。这些任务包括机器翻译、情感分析、文本摘要、问答系统等。大语言模型的成功在很大
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- Opencv Canny边缘检测
noruta
Opencvpythonopencv人工智能计算机视觉
边缘检测的目的是找到灰度值的突变步骤:使用高斯滤波,以平滑图像、滤除噪声计算图像中每个像素点的梯度强度和方向应用非极大值预测,以消除边缘检测的杂散响应应用双阈值检测来确定真实的和潜在的边缘通过抑制孤立的弱边缘最终完成边缘检测5.1高斯滤波器H=[0.09240.11920.09240.11920.15380.11920.09240.11920.0924]H=\begin{bmatrix}0.092
- 神经架构搜索 原理与代码实例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
神经架构搜索:原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习的快速发展,神经网络在各个领域取得了显著的成果。然而,设计一个高效、通用的神经网络架构仍然是一个具有挑战性的问题。手动设计网络架构需要大量的专业知识和经验,而且往往效率低下。因此,神经架构搜索(NeuralArchitectureS
- 智能教育:DeepSeek在个性化学习中的创新应用
Evaporator Core
#DeepSeek快速入门系统架构设计师DeepSeek进阶开发与应用聚类数据挖掘机器学习
教育是塑造未来的基石,而个性化学习则是现代教育的重要趋势。随着人工智能技术的飞速发展,教育领域正迎来一场深刻的变革。DeepSeek作为人工智能领域的领军者,正在通过其强大的技术能力,推动个性化学习的创新应用。一、个性化学习路径:从数据到洞察个性化学习的核心在于根据学生的学习数据,生成定制化的学习路径。DeepSeek通过深度学习算法,能够从海量的学习数据中提取关键信息,生成更加精准的学习建议。f
- 【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
然哥爱编程
深度学习cnnlstm
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述摘要:深度学习模型的超参数选择对模型的性能和泛化能力具有重要影响。本文提出了一种基于鲸鱼算法(WOA)优化长短期记忆神经网络(LSTM)模型的超参数选择方法。首先,我们介绍了LSTM模型的结构和训练过程。然后,我们
- AI视觉觉醒:深度学习如何革新视频标注,释放数据潜力基于深度学习的视频自动标注系统
海棠AI实验室
AI理论探索与学术前沿人工智能深度学习音视频
目录引言:被忽视的视频数据金矿传统视频标注的困境:效率、成本与瓶颈深度学习:视频自动标注的破局之道深度学习视频自动标注系统架构系统架构图核心技术解析目标检测(ObjectDetection)行为识别(ActionRecognition)视频分割(VideoSegmentation)代码实践:基于YOLOv5的目标检测视频标注示例挑战与未来展望结语:AI赋能,释放视频数据的无限可能引言:被忽视的视频
- 基于YOLOv5的无人超市商品检测:食品、饮料、零食与家居用品
深度学习&目标检测实战项目
YOLO目标跟踪深度学习人工智能ui
引言随着人工智能技术的快速发展,尤其是计算机视觉的提升,无人超市的概念逐渐成为现实。在无人超市中,商品的智能化管理和检测是其顺利运行的关键。商品检测不仅要实现高效、准确的物品识别,还要支持多种商品类别的实时检测,以保证购物体验的顺畅与安全。在此背景下,深度学习与目标检测算法,如YOLOv5,成为了实现这一目标的重要工具。YOLOv5作为目前最先进且高效的目标检测算法之一,其应用范围广泛,包括人脸检
- 基于YOLOv5的野生动物检测与监控系统:猫、狗、鸟、猴子、狮子、老虎、象的实时识别与分析
深度学习&目标检测实战项目
YOLO目标跟踪人工智能深度学习ui目标检测机器学习
1.引言随着人工智能技术的飞速发展,尤其是深度学习在计算机视觉领域的突破,目标检测技术已广泛应用于各类场景。从城市交通监控到安防系统,再到野生动物保护和生态监测,目标检测技术为我们提供了实时、精确的解决方案。在众多目标检测算法中,YOLO(YouOnlyLookOnce)系列因其高效性和实时性,已成为解决多类别目标检测任务的首选方法。本文将介绍如何使用YOLOv5进行野生动物检测与监控,包括猫、狗
- LLaMA Factory添加新模型template的实战解析
herosunly
大模型llamafactory新模型template实战解析
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 电商图书行业类目AI导购Agent系统详细设计与开发实战
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着电子商务的蓬勃发展,图书行业也迎来了线上销售的黄金时代。然而,海量的图书种类、复杂的读者需求,使得用户在选购图书时常常面临选择困难。传统的搜索和推荐方式往往无法精准匹配用户的个性化需求,导致用户体验不佳,转化率低。为了解决这一痛点,AI导购Agent系统应运而生。该系统利用人工智能技术,模拟专业的图书导购员,为用户提供个性化的图书推荐和导购服务。通过深度学习、自然语言处理等技术,A
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 深度学习-136-LangGraph之应用实例(五)构建RAG问答系统同时从不同的角度对比优化效果
皮皮冰燃
深度学习深度学习人工智能LangGraphRAG
文章目录1大语言模型2小粒度分割文档2.1处理文本构建Document2.2向量存储2.3创建图2.4测试调用3大粒度分割文档3.1构建Document3.2向量存储3.3创建图3.4测试调用4总结与优化4.1问题分析4.2对比不同的返回文档数4.3对比不同的嵌入模型4.3.1嵌入模型nomic-embed-text4.3.2嵌入模型bge-m34.4对比不同的大模型4.4.1大模型qwen2:7
- 56、深度学习-自学之路-自己搭建深度学习框架-17、关于为什么LSTM可以解决RNN的梯度爆炸和梯度消失的问题的解析。
小宇爱
深度学习-自学之路深度学习rnnlstm
我的话太苍白,你们可以去哔哩哔哩上搜索一个"大白话讲解LSTM长短期记忆网络如何缓解梯度消失,手把手公式推导反向传播”不仅仅解释了为什么,还把公式的推导也给了出来。讲的已经非常好了。还可以看一下他的专辑内容,其中有RNN,LSTM,GRU的详细解释。比我说的好。
- 从opencv-python入门opencv--GUI功能之绘图&鼠标与图像界面的交互
这是一个图像
python计算机外设opencvGUI计算机视觉图像处理交互
从opencv-python入门opencv--GUI功能之绘图和鼠标操作一、文章介绍二、opencv绘制直线、矩形、圆形1、cv.line()2、cv.circle()3、cv.rectangle()4、在图像上绘制直线、矩形和圆形5、cv.ellipse()(在空白画布上绘制椭圆)(1)img=cv.ellipse(img,center,axes,angle,startAngle,endAng
- 卷积神经网络(Convolutional Neural Network,CNN)详细解释(带示例)
浪九天
人工智能理论人工智能神经网络深度学习机器学习
目录卷积神经网络示例Python案例代码解释卷积神经网络概述:卷积神经网络是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型。它通过卷积层、池化层和全连接层等组件,自动提取数据的特征,大大减少了模型的参数数量,降低计算量,同时提高了模型的泛化能力。主要组件卷积层:是CNN的核心组件,由多个卷积核组成。卷积核在数据上滑动,通过卷积操作提取数据的局部特征。卷积操作是将卷积核与数据的局
- 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型_大模型如何训练
大耳朵爱学习
人工智能语言模型产品经理大模型AI大模型
摘要:通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步
- DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:
人工智能专属驿站
架构计算机视觉
以下是关于DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:1.事件检测与预警技术实现:视频监控与传感器数据融合:利用地铁站内的视频监控系统和传感器(如烟雾传感器、压力传感器)实时采集数据。通过深度学习算法(如目标检测和行为识别)对视频流进行分析,结合传感器数据,快速识别突发事件。自动警报触发:一旦检测到异常事件(如火灾、拥挤踩踏),系统立即通过预设的警报机制
- 使用深度学习模型U-Net进行训练基于哨兵2的作物分割数据集。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测
计算机C9硕士_算法工程师
分割数据深度学习pytorch人工智能
使用深度学习模型如U-Net进行训练基于哨兵2的作物分割。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测基于哨兵2的作物分割,共18种作物类型(背景,草地,软冬小麦,玉米,冬季大麦,冬季油菜,春季大麦,向日葵,葡萄藤,甜菜,冬季小黑麦,冬季硬质小麦,水果、蔬菜、花卉,土豆,豆科饲料,大豆,果园,混合谷物,高粱),38到61个不同时间段同一位置10通道多光谱图像,
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement