整数划分

整数划分

将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2,4} {1,2,3},共4种。由于数据较大,输出Mod 10^9 + 7的结果即可。

Input

输入1个数N(1 <= N <= 50000)。

Output

输出划分的数量Mod 10^9 + 7。

Sample Input

6

Sample Output

4

题解:

状态转移方程:f[i][j]:=f[i-j,j]+f[i-j,j-1]。

下面来具体解释一下这个方程:

1、f[i-j,j]表示的是将i分为不包含1(min>=2)的方案总个数,例如,6(=9-3)分成3份可以分为{1,2,3},则9可以分为{1+1,2+1,3+1}->{2,3,4}【仅1种

2、f[i-j,j-1]表示的是将i分为包含1(min=1)的方案总个数,例如,6=(=9-3)分成2(=3-1)可以分为{0,1,5}{0,2,4},则9可以分为{0+1,1+1,5+1}{0+1,2+1,4+1}->{1,2,6}{1,3,5}【共2种   

至于为什么状态转移方程的f[i-j,j-1]与“数的划分”中的f[i-1,j-1]存在着区别,其根本原因是,一个可以分成相同的数,而另一个则不能。多减的这(j-1)其实是为了保证划分中的数据不存在重复并一定从小到大排列。

代码:

#include
#include
#include
using namespace std;

int  f[50050][350];
int main()
{
	int n;
    while(~scanf("%d",&n))
	{
	
	   int i,j,t=0;
	   memset(f,0,sizeof(f));
	   f[1][1]=1;
      for (i=1;i<=n;i++)  
        for (j=1;j

 

你可能感兴趣的:(动态规划)