D - 桁和 / Digit Sum(数学)

Problem Statement

For integers b(b≥2)b(b≥2) and n(n≥1)n(n≥1), let the function f(b,n)f(b,n) be defined as follows:

  • f(b,n)=nf(b,n)=n, when n
  • f(b,n)=f(b,floor(n/b))+(n mod b)f(b,n)=f(b,floor(n/b))+(n mod b), when n≥bn≥b

Here, floor(n/b)floor(n/b) denotes the largest integer not exceeding n/bn/b, and n mod bn mod b denotes the remainder of nn divided by bb.

Less formally, f(b,n)f(b,n) is equal to the sum of the digits of nn written in base bb. For example, the following hold:

  • f(10,87654)=8+7+6+5+4=30f(10,87654)=8+7+6+5+4=30
  • f(100,87654)=8+76+54=138f(100,87654)=8+76+54=138

You are given integers nn and ss. Determine if there exists an integer b(b≥2)b(b≥2) such that f(b,n)=sf(b,n)=s. If the answer is positive, also find the smallest such bb.

Constraints

  • 1≤n≤10111≤n≤1011
  • 1≤s≤10111≤s≤1011
  • n,sn,s are integers.

Input

The input is given from Standard Input in the following format:

nn
ss

Output

If there exists an integer b(b≥2)b(b≥2) such that f(b,n)=sf(b,n)=s, print the smallest such bb. If such bb does not exist, print -1 instead.


Sample Input 1 Copy

Copy

87654
30

Sample Output 1 Copy

Copy

10

Sample Input 2 Copy

Copy

87654
138

Sample Output 2 Copy

Copy

100

Sample Input 3 Copy

Copy

87654
45678

Sample Output 3 Copy

Copy

-1

Sample Input 4 Copy

Copy

31415926535
1

Sample Output 4 Copy

Copy

31415926535

Sample Input 5 Copy

Copy

1
31415926535

Sample Output 5 Copy

Copy

-1

题意:
 

一句话题意:一个数N在b进制下表示为。记。现在告诉你,请你求出满足条件的最小的,如果这样的不存在,请输出-1。

分为两种情况讨论。

时:

直接枚举

时:

显然。又因为。所以

是已知的,只需要枚举的因数即可。

代码:

#include
#define ll long long
using namespace std;
ll f(ll b,ll n)
{
    if(n>n>>s;
    if(n=2&&a0>=0&&a0


 

你可能感兴趣的:(数学)