数学建模 模拟退火入门介绍

       模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 

     

                

模拟退火算法可以分解为解空间、目标函数和初始解三部分。

    基本思想:
                (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
                (2) 对k=1,……,L做第(3)至第6步:
                (3) 产生新解S′
                (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
                (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
                (6) 如果满足终止条件则输出当前解作为最优解,结束程序。
              终止条件通常取为连续若干个新解都没有被接受时终止算法。
                (7) T逐渐减少,且T->0,然后转第2步。

        


  模拟退火算法新解的产生和接受可分为如下四个步骤:
                第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
                第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
                第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:  若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
                第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

                

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率100%收敛于全局最优解的全局优化算法,模拟退火算法具有并行性。


模拟退火伪代码:

Procedure TSPSA:
               begin 
                init-of-T; { T为初始温度}
                S={1,……,n}; {S为初始值}
                termination=false;
                while termination=false
                 begin 
                  for i=1 to L do
                    begin
                      generate(S′form S); { 从当前回路S产生新回路S′}
                      Δt:=f(S′))-f(S);{f(S)为路径总长}
                      IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])
                      S=S′;
                      IF the-halt-condition-is-TRUE THEN 
                      termination=true;
                    End;
                  T_lower;
                 End;
               End

                

模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。


                

模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:
 (1) 温度T的初始值设置问题。
             温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。
 (2) 退火速度问题。
              模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。
 (3) 温度管理问题。
              温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:


              T(t+1)=k×T(t)
              式中k为正的略小于1.00的常数,t为降温的次数。

你可能感兴趣的:(数学建模)