import np
# import plot
# import matplotlib
import matplotlib.pyplot as plt # plt
# 李宏毅原代码没有加载相关参数,以上为我自行加载的。
x_data = [338, 333, 328, 207, 226, 25, 179, 60, 208, 606]
y_data = [640, 633,619, 393, 428, 27, 193, 66, 226, 1591]
x = np.arange(-200, -100, 1) # bias
y = np.arange(-5, 5, 0.1) # weight
Z = np.zeros((len(x), len(y)))
X,Y = np.meshgrid(x, y)
for i in range(len(x)):
for j in range(len(y)):
b = x[i]
w = y[j]
Z[j][i] = 0
for n in range(len(x_data)):
Z[j][i] = Z[j][i] + (y_data[n] - b - w*x_data[n])**2
Z[j][i] = Z[j][i]/len(x_data)
# yadata = b + w*xdata
b = -120 # intial b
w = -4 # intial w
lr = 0.0000001 # learning rate
iteration = 100000
# store initial values for plotting
b_history = [b]
w_history = [w]
# iterations
for i in range(iteration):
b_grad = 0.0
w_grad = 0.0
for n in range(len(x_data)):
b_grad = b_grad - 2.0*(y_data[n] - b - w*x_data[n])*1.0
w_grad = w_grad - 2.0*(y_data[n] - b - w*x_data[n])*x_data[n]
# update parameters
b = b - lr*b_grad
w = w - lr*w_grad
# store parameters for plotting
b_history.append(b)
w_history.append(w)
# plot the figure
plt.contourf(x, y, Z, 50, alpha=0.5, cmap=plt.get_cmap('jet'))
plt.plot([-188.4], [2.67], 'x', ms=6, marker=6, color='orange')
# 李宏毅课程原代码为markeredeweight=3,无法运行,改为了marker=3。
# ms和marker分别代表指定点的长度和宽度。
plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black')
plt.xlim(-200, -100)
plt.ylim(-5, 5)
plt.xlabel(r'$b$', fontsize=16)
plt.ylabel(r'$w$', fontsize=16)
plt.show()
对 b 和 w 给予克制化的Learning Rate:
学习率 lr 改为 1,lr_b = 0 / lr_w = 0 ;
对b、w定制化的学习率lr,采用Adagard
b = b - lr / np.sqrt(lr_b) * b_grad ; w = w - lr / np.sqrt(lr_w) * w_grad
import np
# import plot
# import matplotlib
import matplotlib.pyplot as plt # plt
# 李宏毅原代码没有加载相关参数,以上为我自行加载的。
x_data = [338, 333, 328, 207, 226, 25, 179, 60, 208, 606]
y_data = [640, 633,619, 393, 428, 27, 193, 66, 226, 1591]
x = np.arange(-200, -100, 1) # bias
y = np.arange(-5, 5, 0.1) # weight
Z = np.zeros((len(x), len(y)))
X,Y = np.meshgrid(x, y)
for i in range(len(x)):
for j in range(len(y)):
b = x[i]
w = y[j]
Z[j][i] = 0
for n in range(len(x_data)):
Z[j][i] = Z[j][i] + (y_data[n] - b - w*x_data[n])**2
Z[j][i] = Z[j][i]/len(x_data)
# yadata = b + w*xdata
b = -120 # intial b
w = -4 # intial w
lr = 1 # learning rate,通过调节不同的lr参数可以获得不同的曲线长度
iteration = 100000
# store initial values for plotting
b_history = [b]
w_history = [w]
# 对b、w定制化的学习率lr
lr_b = 0
lr_w = 0
# iterations
for i in range(iteration):
b_grad = 0.0
w_grad = 0.0
for n in range(len(x_data)):
b_grad = b_grad - 2.0*(y_data[n] - b - w*x_data[n])*1.0
w_grad = w_grad - 2.0*(y_data[n] - b - w*x_data[n])*x_data[n]
# 对b、w定制化的学习率lr
lr_b = lr_b + b_grad ** 2
lr_w = lr_w + w_grad ** 2
# update parameters
# b = b - lr*b_grad
# w = w - lr*w_grad
# update parameters
# 对b、w定制化的学习率lr,采用Adagard
b = b - lr / np.sqrt(lr_b) * b_grad
w = w - lr / np.sqrt(lr_w) * w_grad
# store parameters for plotting
b_history.append(b)
w_history.append(w)
# plot the figure
plt.contourf(x, y, Z, 50, alpha=0.5, cmap=plt.get_cmap('jet'))
plt.plot([-188.4], [2.67], 'x', ms=6, marker=6, color='orange')
# 李宏毅课程原代码为markeredeweight=3,无法运行,改为了marker=3。
# ms和marker分别代表指定点的长度和宽度,
plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black')
plt.xlim(-200, -100)
plt.ylim(-5, 5)
plt.xlabel(r'$b$', fontsize=16)
plt.ylabel(r'$w$', fontsize=16)
plt.show()
经过100000次迭代,找到了最优解。