题目链接:https://www.luogu.com.cn/problem/P1445
1 x + 1 y = 1 n ! \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} x1+y1=n!1
= > x + y x y = 1 n ! => \frac{x+y}{xy}=\frac{1}{n!} =>xyx+y=n!1
= > x y = x ∗ n ! + y ∗ n ! => xy = x*n!+y*n! =>xy=x∗n!+y∗n!
= > y ( x − n ! ) = x ∗ n ! =>y(x-n!) = x*n! =>y(x−n!)=x∗n!
= > y = x ∗ n ! x − n ! =>y = \frac{x*n!}{x-n!} =>y=x−n!x∗n!
令 z = x − n ! z = x-n! z=x−n!,则 x = z + n ! x = z+n! x=z+n!
= > y = n ! ∗ ( z + n ! ) z =>y = \frac{n!*(z+n!)}{z} =>y=zn!∗(z+n!)
= > y = n ! + n ! ∗ n ! z =>y = n!+\frac{n!*n!}{z} =>y=n!+zn!∗n!
x , y x,y x,y都是正整数,则 n ! ∗ n ! n!*n! n!∗n!需能整除z,求 n ! ∗ n ! n!*n! n!∗n!的因数数量即可。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define dbg(x) cout<<#x<<" = "<
#define INF 0x3f3f3f3f
#define eps 1e-6
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int maxn = 1000100;
const int mod = 1000000007;
int a[maxn];
LL getnum(int n, int x);
int main()
{
int n, i, j, k;
LL ans = 1;
scanf("%d", &n);
for(i=2;i<=n;i++)
if(!a[i]){
for(j=i+i;j<=n;j+=i)
a[j] = 1;
LL num = 2*getnum(n, i)+1;
ans = ans*num%mod;
}
printf("%lld\n", ans);
return 0;
}
LL getnum(int n, int x)
{
LL res = 0;
while(n){
res += n/x;
n /= x;
}
return res;
}