HDU 6097 数学几何

Mindis

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1519    Accepted Submission(s): 237
Special Judge


Problem Description
The center coordinate of the circle C is O, the coordinate of O is (0,0) , and the radius is r.
P and Q are two points not outside the circle, and PO = QO.
You need to find a point D on the circle, which makes  PD+QD minimum.
Output minimum distance sum.
 

Input
The first line of the input gives the number of test cases T; T test cases follow.
Each case begins with one line with r : the radius of the circle C.
Next two line each line contains two integers x , y denotes the coordinate of P and Q.

Limits
T500000
100x,y100
1r100
 

Output
For each case output one line denotes the answer.
The answer will be checked correct if its absolute or relative error doesn't exceed  106.
Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if  |ab|max(1,b)106.
 

Sample Input
 
   
4 4 4 0 0 4 4 0 3 3 0 4 0 2 2 0 4 0 1 1 0
 

Sample Output
 
   
5.6568543 5.6568543 5.8945030 6.7359174
 

Source
2017 Multi-University Training Contest - Team 6
 


题意 : 给一个圆,两个点,这两个点不在圆外,两个点到圆心距离相等,求圆上点到两个点距离和的最小值。

思路 : 首先要了解反演点

一般指二维反演中的点。
二维上反演以一个特定的反演圆为基础:圆心O为反演中心,圆半径为常数k,把点P反演为点P'就是使得OP×OP'=r^2 (来自百度百科)
首先做出两个点的反演点 P' 和 Q' ,ODP与ODP' 是相似三角型(这个不难证明)

所以极小的 PD + QD 可转化为极小的P'D + Q'D 

当P'Q'与圆有交点的时候可以使P'DQ'在同一直线上,这时P'Q'之间的距离就是 ODP' + ODQ'的最小值,那么ODP + ODQ的最小值就等于 P'Q' * (相似的比例)

当P'Q与圆无交点的时候,可以把P' 和 Q'当作一个椭圆的两个交点,我们知道椭圆上的点到椭圆上任意一点的距离之和都相等,所以我们慢慢放大椭圆直到与圆相切的时候,那个点就是最短距离点,你会发现,那个点一定在中垂线上,所以就去求中垂线与圆的交点的距离就可以了

#include
#include
#define eps 1e-8  

int main(){
	int T;
	double r,x1,y1,x2,y2,x3,y3,x4,y4;
	double d1,d2,d,k1,k2,dist,ans;
	double mx,my,smx,smy;
	scanf("%d",&T);
	while(T--){
		scanf("%lf %lf %lf %lf %lf",&r,&x1,&y1,&x2,&y2);
		
		d1 = sqrt(pow(x1,2) + pow(y1,2)); // 计算出其中一点到圆心距离 
		k1 = pow(r,2) / pow(d1,2);		// 这个 k 由 d(反演点) * d(p点) = r ^ 2 推出 
		x3 = x1 * k1,y3 = y1 * k1;		//用这个比例得出反演点坐标 
		x4 = x2 * k1,y4 = y2 * k1;
		
		mx = (x3 + x4) / 2;				//求出两反演点的中点 
		my = (y3 + y4) / 2;
		d2 = sqrt(pow(mx,2) + pow(my,2)); //中点到圆心的距离可以判断是否与圆相交 
		
		if(fabs(d1) <= eps){
			ans = 2 * r;
		}else if(d2 <= r){
			dist = sqrt(pow(x3 - x4,2) + pow(y3 - y4,2));
			k2 = d1 / r;
			ans = dist * k2;
		}else if(d2 > r){
			k2 = r / d2;
			smx = mx * k2,smy = my * k2;
			ans = 2 * (sqrt(pow(smx - x1,2) + pow(smy - y1,2)));
		}
		printf("%.7f\n",ans);
	}
	return 0;
}

你可能感兴趣的:(ACM-,数学)