- 让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!
Echo_Wish
Python进阶人工智能学习
让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!朋友们,今天咱不聊ChatGPT,不聊大模型黑魔法,也不玩Prompt咒语。我想聊一个比“怎么训模型”更底层、更值得思考的问题:如果我们能让模型自己学会怎么更快、更聪明地学习,是不是就能少走很多弯路?这,就是元学习(MetaLearning)要解决的事儿。说白了,元学习是AI给AI上培训课的过程。咱们天天琢磨怎么喂模型数据、调超参、搞迁移
- 元学习的认知思维棱镜
由数入道
AI辅助教学学习元学习思维模型认知框架思维棱镜
在学习这场马拉松中,大多数人只关注如何跑得更快(学习方法),但元学习关注的却是如何学会规划路线、调整呼吸、监测体能,甚至理解身体(大脑)的运作机制,从而跑得更远、更有效率。元学习(Meta-Learning)——“学会学习”的底层操作系统本质:元学习,简而言之,就是我们的大脑如何学习、如何反思学习过程、并如何优化学习策略的能力。它不是学习具体知识,而是学习如何学习知识本身。它好比你手中的智能手机,
- 【LLaMA 3实战】6、LLaMA 3上下文学习指南:从少样本提示到企业级应用实战
无心水
LLaMA3模型实战专栏llamaLLaMA3实战LLaMa3上下文AI入门程序员的AI开发第一课人工智能AI
一、上下文学习(ICL)的技术本质与LLaMA3突破(一)ICL的核心原理与模型机制上下文学习(In-ContextLearning)的本质是通过提示词激活预训练模型的元学习能力,使模型无需微调即可适应新任务。LLaMA3的ICL架构通过以下机制实现突破:任务抽象:从示例中提取输入输出映射规则,如情感分析中的正负向判断模式模式泛化:将规则迁移到新输入,支持跨领域知识迁移动态适应:实时调整注意力分布
- 衡水中学状元数学学习资料完整攻略
向沙托夫问好
本文还有配套的精品资源,点击获取简介:《状元全科笔记衡水内部资料数学学习文档》提供了一个全面的数学学习资源,旨在通过衡水中学的教学经验和方法提升学生的数学成绩。资料包含基础知识、题型解析、模块训练、思维拓展和学习方法,引导学生深入理解数学概念,培养逻辑思维和解决问题的能力。文档结构清晰,内容详实,附带使用指南,帮助学生系统提升数学素养,实现学习效率和成绩的双重提高。1.状元学习方法分享在追求卓越成
- Python机器学习元学习库higher
音程
机器学习人工智能python机器学习
higher是一个用于元学习(Meta-Learning)和高阶导数(Higher-ordergradients)的Python库,专为PyTorch设计。它扩展了PyTorch的自动微分机制,使得在训练过程中可以动态地计算参数的梯度更新,并把这些更新过程纳入到更高阶的梯度计算中。一、主要用途higher主要用于以下场景:元学习(Meta-Learning)比如MAML(Model-Agnosti
- 元学习在个性化医疗AI中的应用研究
SuperAGI2025
AI大模型应用开发宝典学习人工智能ai
元学习在个性化医疗AI中的应用研究关键词:元学习、个性化医疗、人工智能、机器学习、医疗应用、算法原理、临床决策摘要:本文聚焦于元学习在个性化医疗AI中的应用研究。首先介绍了研究的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了元学习和个性化医疗的核心概念及联系,详细讲解了元学习的核心算法原理并给出Python示例代码。同时,给出了相关数学模型和公式并举例说明。通过项目实战展示了元学习在个性
- 元学习与Transformer的结合:Meta-Transformer架构解析
AI智能探索者
AIAgent智能体开发实战学习transformer架构ai
元学习与Transformer的结合:Meta-Transformer架构解析关键词:元学习、Transformer、Meta-Transformer、架构解析、深度学习摘要:本文主要探讨了元学习与Transformer结合形成的Meta-Transformer架构。首先介绍了相关背景知识,包括元学习和Transformer的基本概念。接着详细解释了Meta-Transformer的核心概念,分析
- AIGC模型泛化能力:文心一言的多场景适应
AI原生应用开发
AI原生应用开发AIGC文心一言ai
AIGC模型泛化能力:文心一言的多场景适应关键词:AIGC、泛化能力、文心一言、多场景适应、迁移学习、元学习、领域适配摘要:本文深入解析百度文心一言在多场景下的泛化能力构建技术,从核心概念、算法原理、数学模型到实战应用展开分析。通过揭示文心一言的分层适配架构、动态知识融合机制及多模态协同策略,探讨其如何突破单一场景限制,实现内容生成、智能交互、跨领域任务的高效迁移。结合具体代码案例和数学推导,展示
- 基于PyTorch的少样本学习(Few-shot Learning)实现
AI原生应用开发
pytorch学习人工智能ai
基于PyTorch的少样本学习(Few-shotLearning)实现:用"小抄"教会AI快速学习新任务关键词:少样本学习、PyTorch、元学习、支持集、原型网络摘要:传统深度学习需要"海量数据喂养",但现实中很多场景(如罕见病诊断、新物种识别)只有少量样本。本文将用"小学生考试"的比喻,带您一步步理解少样本学习(Few-shotLearning)的核心原理,并用PyTorch实现一个能"看5张
- 迁移学习解析
劭清
深度学习迁移学习人工智能机器学习
一、迁移学习的核心价值1.1定义与范式演进迁移学习(TransferLearning)是通过将源领域的知识迁移到目标领域,提升目标领域模型性能的机器学习范式。其演进路径为:传统机器学习深度学习迁移学习元学习/领域自适应1.2核心优势对比方法数据需求训练成本适用场景传统训练大量标注数据高数据充足场景迁移学习少量标注数据低数据稀缺领域从头训练海量标注数据极高研究级场景1.3应用场景分析跨领域应用:自然
- Meta-Learning算法在机器人适应性控制中的底层机制
学习ing1
算法机器人人工智能
1.Meta-Learning算法基础1.1Meta-Learning定义与原理Meta-Learning,即元学习,是指让机器学会如何更好地学习,其核心在于通过对多个相关任务的学习来获取更高效的学习策略和知识迁移能力,从而在面对新任务时能够快速适应并取得较好的学习效果。其原理主要基于以下几个方面:任务分布假设:假设存在一个任务分布,通过对该分布中多个任务的学习,模型能够学习到一种通用的学习策略,
- 元学习在AIGC模型泛化能力提升中的作用
AI天才研究院
计算javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
引言随着人工智能技术的迅猛发展,生成式内容创造(AIGC,ArtificialIntelligenceGeneratedContent)成为了一个备受关注的热点领域。AIGC模型,通过机器学习和深度学习技术,能够自动生成文本、图像、音频等多种类型的内容,极大地提高了内容创造的效率和多样性。然而,这些模型在实际应用中面临着泛化能力不足的问题,即在训练数据集中表现良好,但在未知或不同类型的数据上表现不
- 从零到前沿:2025年人工智能系统性学习路径与最新技术融合指南
小李独爱秋
人工智能人工智能学习
一、构建人工智能认知框架(一)基础学科筑基数学核心能力线性代数:掌握矩阵运算(张量分解在推荐系统的应用)与特征值分析(PCA降维原理)概率统计:贝叶斯网络在医疗诊断中的应用,蒙特卡洛方法在强化学习的采样策略优化理论:2025年主流的元学习(Meta-Learning)框架中的二阶优化算法发展计算机科学基础数据结构:图神经网络(GNN)中的邻接矩阵存储优化操作系统:分布式训练中的GPU资源调度策略(
- AGI彻底实现还有3大鸿沟需要跨越-现在人类离AGI还很远
TGITCIC
AI-大模型的落地之道agi人工智能AIGC通用人工智能实现AGI大模型大模型开源
(前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站)。一、AGI的现状:从“专才”到“通才”的鸿沟1.1当下的AI:任务型“天才”与全能型“学渣”GPT-4在代码生成、文本创作等单一领域已接近人类水平,但跨领域迁移能力薄弱。例如,斯坦福大学测试显示,用文学分析模型解微分方程的错误率高达92%。这暴露出当前模型的核心缺陷——缺乏“元学习”能力。1.2中
- 基于元学习的快速适应推荐算法
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
基于元学习的快速适应推荐算法关键词推荐系统,元学习,快速适应,算法优化,协同过滤摘要本文主要介绍了基于元学习的快速适应推荐算法。首先,对推荐系统的基本概念、发展历程、核心概念和架构进行了概述。接着,详细探讨了元学习的基础知识、分类、优势以及快速适应推荐算法的原理和优缺点。随后,深入分析了元学习在推荐系统中的应用、实现和挑战。最后,通过一个实际项目案例,展示了基于元学习的快速适应推荐系统的实现过程、
- 通用型AI智能体Manus:技术突破与OpenManus云平台革命
Loving_enjoy
实用技巧人工智能
一、通用型AI智能体的进化:Manus的技术突破**在人工智能技术从专用型向通用型跨越的浪潮中,Manus作为新一代通用AI智能体,正重新定义人机协作的边界。其核心价值在于突破了传统AI模型"单一场景适配"的局限,构建了可自主进化、多模态交互、跨领域迁移的智能体系。**1.Manus的四大技术支柱**(1)**元学习驱动的认知框架**Manus采用混合式元学习架构(HybridMeta-Learn
- 第37篇Personalized Federated Learning: A Meta-Learning Approach(perfedavg联邦学习+元学习)2020个性化联邦学习使用Hessian
还不秃顶的计科生
联邦学习学习
第一部分:解决的问题联邦学习(FL)在多用户协同训练模型时,因数据隐私和通信限制,用户仅与中央服务器交互。传统FL方法得到的全局模型无法适应各用户的异质数据,导致在用户本地数据集上性能不佳因此这篇论文旨在解决联邦学习中模型缺乏个性化的问题第二部分:idea基于模型无关元学习(MAML)框架,提出个性化联邦学习问题的新公式。通过寻找一个初始共享模型,让用户基于自身数据执行少量梯度下降步骤就能快速适应
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 一切皆是映射:量子机器学习与传统元学习的融合
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的瓶颈当前,人工智能(AI)取得了令人瞩目的进步,尤其是在图像识别、自然语言处理等领域。然而,AI仍然面临着一些瓶颈,例如:数据依赖性:AI模型通常需要大量的训练数据才能达到良好的性能,而获取和标注这些数据往往成本高昂。泛化能力:AI模型在面对未见过的数据时,泛化能力往往不足,容易出现过拟合等问题。可解释性:AI模型的决策过程往往难以解释,这限制了其在一些关键领域的应用。
- 一切皆是映射:元学习中的神经架构搜索(NAS)
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
元学习神经架构搜索NAS遗传算法强化学习演化算法一切皆是映射:元学习中的神经架构搜索(NAS)在人工智能的广阔领域中,神经架构搜索(NeuralArchitectureSearch,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、
- 【86】喜欢“折腾”的余老师
亲亲鱼老师
“我们的进度会比其他班级慢一点,因为我们的实践作业会多一些,希望你们能够明白老师要求做的一切……第三单元学习写观察日记,为了学生体验感再强一些,我让孩子们种植大蒜,每天再写一篇观察日记。原本想着连续让孩子们观察六天就好,结果是六天结束了,孩子们因各种各样的原因,小蒜苗的生长各不相同,关键是真正长出绿色叶子的没几个,于是决定再继续观察几天……要问我为什么喜欢如此折腾?我想我能给的答案一定是为了所有的
- 元学习(meta learning)(一)
前行居士
学习人工智能神经网络深度学习机器学习元学习
元学习从字面的意思就是“学习”的“学习”,也就是学习如何学习。大部分的深度学习就是在不断的调整超参数,或者在决定网络架构,改变学习率等等。实际上没有什么好方法来调这些超参,今天工业界最常拿来解决调整超参数的方法是买很多张GPU,然后一次训练多个模型,有的训练不起来、训练效果比较差的话就输入掉,最后只看那些可以训练的比较好的模型会得到什么样的性能。所以在业界做实验的时候往往就是一次开几张GPU,这些
- 《压缩空气》
Hecate0523
本节课的内容,主要是通过空气和水的体积改变对比实验,来探究空气的体积可以改变,有弹性。在引发的本节课的内容时,我使用了两个球一个气球一个水球,为上节课空气占据空间,有体积,又进一步加深知识学习。通过手捏和压,让学生在激发兴趣的过程中,感受了一下我们可以对空气和水施加力让它们有变化。在做压缩实验的过程中,先介绍了注射器的结构、量程、以及如何读数,学生在上个单元学习了温度计后,在学习这个注射器对于刻度
- 11-22各数的认识之备课思
马明洋河南信阳
11—20各数的认识是一年级上册第六单元的教学内容,至此之前,学生已经在第三单元学习了1—5的认识和加减法、第五单元学习了6—10的认识和加减法。即,11—20各数的认识是在学习了“1—10的认识”基础上对数的进一步认识。1—10的教学重点是使学生体验1—9从数量到数的抽象过程,通过9再加1就是十,体会十的表达与1—9的不同是在新的位置上写1,这个位置叫十位,十位上的1表示1个十,1个十用数字符号
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 精读Relational Embedding for Few-Shot Classification (ICCV 2021)
coding_ksy
论文阅读笔记embedding人工智能
RelationalEmbeddingforFew-ShotClassification(ICCV2021)一、摘要该研究提出了一种针对少样本分类问题的新方法,通过元学习策略来学习“观察什么”和“在哪里关注”。这种方法依赖于两个关键模块:自相关表示(SCR)和交叉相关注意力(CCA),来分别处理图像内部和图像之间的关系模式。自相关表示(SCR)模块:用于捕捉单个图像内的结构化模式,通过转换基础特征
- 【清华北大状元学习法,成人也适用】课程下载百度网盘云
萌萌爱读书
☞课业压力大,如何进行课外阅读☞如何让自己爱上学习☞如何快速进入学习状态☞知识浩如烟海,如何学记的牢☞想学好理科,先培养逻辑思维能力☞偏科怎么办,薄弱学科如何逆袭☞总是粗心马虎,三种方法培养细心能力☞成绩下滑很快怎么办☞5+10预习复习法,学的快记的牢☞记笔记不是抄板书,你真的会记笔记吗☞学会看答案,胜过刷100道题☞3招做好学习计划,让学习有条不紊☞做作业太慢,学习没有信心怎么办☞拆分学习任务,
- 《松鼠》试讲教案及备课思路
捡起书来
单元首页揭示了第五单元的人文主题和语文要素,见下图:单元导语定下人文主题:说明文以“说明白了”为成功——叶圣陶语文要素定下单元学习目标:1、阅读简单的说明性文章,了解基本的说明方法。2、搜集资料,用恰当的说明方法,把某一种事物介绍清楚。下面正式进入课文:一、教学目标:①知识与技能:了解按顺序写松鼠的说明方法,了解松鼠的特点,“能用先……再……然后”写话。②过程与方法:通过学习基本的说明方法,了解如
- 《认识气温计》教学反思
晓凤w
本节课知识相对简单,目标也比较清晰。主要是让孩子知道气温计的结构,然后学会使用气温计。首先提出问题今天的天气是热是冷?到底有多冷?通过孩子们回答的气温度数引出课题,认识气温计,结合一单元学习的水温计的结构,孩子们能较快的掌握气温计的结构。接着是气温计的读数,我是先出示几个读数,请孩子们试读,0摄氏度以上的温度孩子们读起来没有任何问题,0摄氏度以下的还是存在一些问题,但每个班都会有个别会读的小朋友,
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl