- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- QT与Python混合编程经验记录
weixin_30237281
python人工智能c/c++
1、如何embeddingpython,Python文档中有专门一章阐述https://docs.python.org/3.5/extending/embedding.htm;1、库文件:在vs--c/c++--附加包含文件中添加目;链接中也要添加,:将python中的include,libs二个目录添加进来2、对于Python,没有调试库,可直接将运行库复制一份,名称后面加上_d,就可用,可不能
- 使用Fleet AI Context和LangChain构建高效的文档检索系统
afTFODguAKBF
人工智能langchainpython
使用FleetAIContext和LangChain构建高效的文档检索系统引言在当今的AI和机器学习领域,高质量的文档检索系统对于提高开发效率和用户体验至关重要。本文将介绍如何利用FleetAIContext提供的高质量embeddings和LangChain框架来构建一个强大的文档检索系统。我们将深入探讨如何处理嵌入向量、检索相关文档,以及如何将这些功能整合到一个简单但功能强大的代码生成链中。主
- Transformer模型:WordEmbedding实现
Galaxy.404
Transformertransformer深度学习人工智能embedding
前言最近在学Transformer,学了理论的部分之后就开始学代码的实现,这里是跟着b站的up主的视频记的笔记,视频链接:19、Transformer模型Encoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili正文首先导入所需要的包:importtorchimportnumpyasnpimporttorch.nnasnnimporttorch.nn.functionalasF关
- 如何将文本转换为向量?(方法二)
DashVector
python开发语言人工智能embedding数据挖掘
文本转换为向量有多种方式:方法一:通过模型服务灵积DashScope将文本转换为向量(推荐)方法二:通过ModelScope魔搭社区中的文本向量开源模型将文本转换为向量方法三:通过JinaEmbeddingsv2模型将文本转换为向量方法四:通过百川智能向量化模型将文本转换为向量本文介绍方法二:如何通过ModelScope魔搭社区中的文本向量开源模型将文本转换为向量,并入库至向量检索服务DashVe
- 探索任务的隐秘世界:推荐Task2Vec
邓越浪Henry
探索任务的隐秘世界:推荐Task2Vecaws-cv-task2vecOfficialcodeforthepaper"Task2Vec:TaskEmbeddingforMeta-Learning"(https://arxiv.org/abs/1902.03545,ICCV2019)项目地址:https://gitcode.com/gh_mirrors/aw/aws-cv-task2vec在机器学习
- 常用torch.nn
mm_exploration
MyDiffusionpythonpytorch人工智能
目录一、torch.nn和torch.nn.functional二、nn.Linear三、nn.Embedding四、nn.Identity五、Pytorch非线性激活函数六、nn.Conv2d七、nn.Sequential八、nn.ModuleList九、torch.outertorch.cat一、torch.nn和torch.nn.functionalPytorch中torch.nn和torc
- DEFT 开源项目教程
马安柯Lorelei
DEFT开源项目教程DEFTJointdetectionandtrackingmodelnamedDEFT,or``DetectionEmbeddingsforTracking."Ourapproachreliesonanappearance-basedobjectmatchingnetworkjointly-learnedwithanunderlyingobjectdetectionnetwor
- 【LangChain-Chatchat】本地部署模型及搭建个人/企业内部知识库
AI_小站
langchain人工智能ai大模型语言模型自然语言处理
此学习教程结合本人安装经验主要提供给想学习和本地安装使用LangChain-Chatchat的同学们,该教程如有描述不当或者引用不正确的地方,欢迎指出!后续也会更新如何结合自己系统使用。介绍基于ChatGLM等大语言模型与Langchain等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。该项目支持开源LLM与Embedding模型,亦可实现全部使用开源模型离线私有部署。与
- Milvus 核心设计 (4) ---- metric及index原理详解与示例(2)
PhoenixAI8
RAGMilvusChroma源码及实践milvuspython机器学习vectordb人工智能
目录背景BinaryEmbedding定义与特点常见算法应用场景距离丈量的方式JaccardHamming代码实现IndexBIN_FLATBIN_IVF_FLATSparseembeddings定义应用场景优点实现方式距离丈量方式IPIndexSPARSE_INVERTED_INDEX应用场景优势SPARSE_WAND工作原理性能特点应用场景小结背景接着上面的Milvusmetric及index
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- Integrating Mamba and Transformer for Long-Short Range Time Series Forecasting————4 METHODOLOG
six.学长
Mambaformertransformer深度学习人工智能
4METHODOLOGY图解Mambaformer模型结合了Mamba和Transformer的元素,旨在进行时间序列预测。以下是Mambaformer模型的各个组成部分和流程的详细说明:嵌入层(EmbeddingLayer)TokenEncoding(令牌编码):这个部分将输入数据编码成向量表示,以捕捉输入特征的语义含义或特征。TemporalEncoding(时间编码):这部分加入时间信息,例
- Zero-Shot Image Classification总结
夏日小光
1任务说明现有的benchmark通过ImageNet-1k上预训练的Res101从已知类的训练集提取feature或者featuremap,然后对每一个类引入一个语义标签,可能是属性标签(attributelabel)、或者描述标签(sentenceembedding)等。对于某个类的属性标签(向量形式),每个维度表示一种属性,该维度下的取值表示这个属性在该类别中存在的可能性,值得注意的是ben
- 英伟达发布最新屠榜 Embedding 模型——NV-Embed-v2
吴脑的键客
人工智能embedding数据库
介绍我们介绍的NV-Embed-v2是一种通用嵌入模型,它在大规模文本嵌入基准(MTEBbenchmark)(截至2024年8月30日)的56项文本嵌入任务中以72.31的高分排名第一。NV-Embed-v2提出了几项新设计,包括让LLM关注潜在向量以获得更好的池化嵌入输出,并展示了一种两阶段指令调整方法,以提高检索和非检索任务的准确性。此外,NV-Embed-v2还采用了一种新颖的硬阴性挖掘方法
- java正则表达式提取字符串中的序号,BAT大厂面试总结
qq_38514574
程序员java经验分享面试
第一个:Alibaba[搜索推荐]一面:算法题:长度为n的数组里放了n+1个大小在[1,n]的数,必然至少有一个重复的数,找出来二面:概率题:求一根绳子被切两刀能组成一个三角形的概率。三面主管面:FM推导,deepfm原理,graphembedding,问了之前的一些项目。四面交叉面:模型上线时应该注意的事,如果请求过高模型服务挂了怎么办,tensorflow和torch的区别,如何降低模型复杂度
- 2.关于Transformer
安逸sgr
Transformertransformer深度学习人工智能
关于Transformer模型架构举例输入图像为3x224x224EmbeddedPatches将一张图的多个区域进行卷积,将每个区域转换成多维度向量(多少卷积核就有多少维向量)self.patch_embeddings=Conv2d(in_channels=in_channels,#颜色通道3out_channels=config.hidden_size,#卷积核个数,也就是输出通道数768ke
- sentence-bert_pytorch语义文本相似度算法模型
技术瘾君子1573
bertpytorch人工智能语义文本相似度模型
目录Sentence-BERT论文模型结构算法原理环境配置Docker(方法一)Dockerfile(方法二)Anaconda(方法三)数据集训练单机多卡单机单卡推理result精度应用场景算法类别热点应用行业源码仓库及问题反馈参考资料Sentence-BERT论文Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networkshttps://ar
- Transformer模型整体构建的实现
好好学习Py
自然语言处理transformerpython人工智能深度学习pytorchnlp
编码器-解码器结构classEncoderDecoder(nn.Module):def__init__(self,encoder,decoder,source_embedding,target_embedding,generator):"""初始化函数中有5个参数,分别是编码器对象,解码器对象,源数据嵌入函数,目标数据嵌入函数,以及输出部分的类别生成器对象"""super(EncoderDecod
- 【深度学习】embedding的简单理解
旅途中的宽~
深度学习笔记深度学习embedding
文章目录一、简单理解二、其他通俗理解一、简单理解特征嵌入,将数据转换(降维)为固定大小的特征表示(矢量),以便于处理和计算(如求距离)。例如,针对用于说话者识别的语音信号训练的模型可以允许您将语音片段转换为数字向量,使得来自相同说话者的另一片段与原始向量具有小的距离(例如,欧几里德距离)。embedding的主要目的是对(稀疏)特征进行降维,它降维的方式可以类比为一个全连接层(没有激活函数),通过
- 深度学习中Embedding的理解
普通攻击往后拉
神经网络基础模型关键点NN技巧深度学习embedding人工智能
Embedding这个概念翻译过来的意思就是嵌入,就是把一个大的东西想办法嵌入到一个小的地方。在深度学习领域,Embedding一般用于代表某个类目的全部相关信息,表现形式为一个向量。1、Embedding常见的操作有两个:加法和拼接,含义完全不同Embedding的加法一般用于同类目的不同物品的合集表示。这个可以按照one-hot的思维去理解。为什么用one-hot而不用二进制去表示不同物品呢?
- Prompt Engineering Concepts
初梦语雪
#NLPprompt
Introduction,ConceptsTextgenerationmodelsgenerationpre-trainedtransformers,GPTforshort.所以呢,前置知识是TransformerAssistants助手指的是能够为用户执行任务的实体;Embeddings是数据的一种vector形式,含有原来的数据的内容和/或意义;Tokens很常见,很基础的概念。Textgen
- 推荐系统中稀疏特征Embedding的优化表示方法
少喝冰美式
embedding算法机器学习人工智能ai大模型大语言模型
本文将介绍两个与稀疏特征Embedding相关的工作。推荐或者CTR预估任务有一个很突出的特点:存在海量稀疏特征。海量意味着数量巨大,稀疏意味着即使在很大的训练数据里,大量特征出现频次也非常低,这往往是由于引入了大量ID类特征带来的。对于DNN排序系统,是否能够找到好的特征Embedding表达方式,对于系统效果是至关重要的。虽然说,如何更好地表征稀疏特征对于模型的泛化能力至关重要,但是,关于这块
- AIGC深度学习教程:Transformer模型中的Position Embedding实现与应用
玩AI的小胡子
embeddingtransformerAIGC人工智能
在进入深度学习领域时,Transformer模型几乎是绕不开的话题,而其中的PositionEmbedding更是关键。对于刚入门的朋友,这篇教程将带你深入了解PositionEmbedding是什么、它如何在Transformer中运作,以及它在不同领域中的实际应用。什么是PositionEmbedding?PositionEmbedding是Transformer模型中一种关键机制,用于弥补模
- 【大模型】FAISS向量数据库记录:从基础搭建到实战操作
爱python的王三金
自然语言处理LLMRAGfaiss数据库rag
文章目录文章简介Embedding模型BGE-M3模型亮点FAISS是什么FAISS实战安装faiss加载Embedding模型创建FAISS数据库搜索FAISS数据删除FAISS数据保存、加载FAISS索引总结本人数据分析领域的从业者,拥有专业背景和能力,可以为您的数据采集、数据挖掘和数据分析需求提供支持。期待着能够与您共同探索更多有意义的数据洞见,为您的项目和业务提供数据分析方面的帮助。文章简
- [CLIP-VIT-L + Qwen] 多模态大模型源码阅读 - 语言模型篇(2)
FlowerLoveJava
多模态学习笔记多模态大模型源码阅读学习笔记nlp计算机视觉人工智能深度学习自然语言处理
多模态学习笔记-语言模型篇(2)参考repo:WatchTower-Liu/VLM-learning;url:vlm-learning吐槽今天的源码看的欲仙欲死,NTK(neuraltangentkernel),rotary_position_embedding这些在之前的学习中完全闻所未闻,导致看的时候一脸懵逼,只能说不愧是Qwen大模型,各种sota的技术都用上了。就是看的有点费劲TAT~学习
- 智能时代 | 合合信息Embedding模型荣获C-MTEB
愤怒的小青春
java
合肥哈工艾斯德康智能科技前端实习(4.11oc)1、自我介绍2、学校课程情况3、自学方法4、盒模型5、定位有哪些属性,一般是在父子元素中怎么使用6、题解|正确使用DENSE_RANK()窗口函数SELECTemp_no,salary,DENSE_RANK()OVER题解|#三角形#java解法服了,搞半天,原来是我long存的数据太小,不得不用BigIntger了。Scann拼多多校招+实习生,速
- 无坑!部署langchain-chatchat + glm4-9b-chat,轻松实现知识库智能问答!
zbc-
langchainlangchain
Langchain-chatchat最新版本0.3.0地址谢谢你的点赞/关注支持通过该项目可以轻松实现智能问答,由于chatglm4的开源,该项目最新版本0.3.0与0.2.0版本部署有所不同。这里llm模型使用glm4-9b-chatembedding模型使用bge-large-zh-v1.5配置虚拟环境创建虚拟环境condacreate--namechat3python=3.10.9激活虚拟环
- Transformer模型:Postion Embedding实现
109702008
人工智能编程#python人工智能学习transformerembedding
GPT-4o(OpenAI)Transformer模型中的PositionEmbedding(位置编码)是用于在不使用循环神经网络的情况下捕捉序列数据的位置信息的一种方法。它允许模型获取输入序列中单词的位置信息,以便更好地理解其顺序。下面是一个简单的基于正弦和余弦函数的PositionEmbedding实现的例子,这种方法在原始的Transformer论文"AttentionisAllYouNee
- 使用Python实现文本向量化(一)——腾讯词向量
Shy960418
Python使用技巧深度学习python人工智能
Docs向量化(Embedding)Embedding也是文本语义含义的信息密集表示,每个嵌入都是一个浮点数向量,使得向量空间中两个嵌入之间的距离与原始格式中两个输入之间的语义相似性相关联。例如,如果两个文本相似,则它们的向量表示也应该相似,这一组向量空间内的数组表示描述了文本之间的细微特征差异。简单来说,Embedding帮助计算机来理解如人类信息所代表的“含义”,Embedding可以用来获取
- 使用POI以OLE对象的形式向excel中插入附件(pdf为例)
庄周的大鱼
excelpoiEasyExcel经验分享填充附件OLE
前言:最近在使用easyExcel操作excel文件时,一直想找到一个方法可以往excel中填充附件,但是目前只发现POI可以插入附件,于是将方法记录如下:实现:这个方法主要是使用ApachePOI的HSSFWorkbook类来创建一个Excel文件,并在其中插入了一个作为OLE(ObjectLinkingandEmbedding)对象的PDF文件。同时,它还关联了一个图片,作为该PDF文件的预览
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方