- 最新基于MATLAB机器学习、深度学习实践技术应用
weixin_贾
python深度学习MATLAB编程matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。系统学习机器学习和深度学习的理论知识及对应的代码实现方法,掌握图像处理的基础知识,以及经典机器学习算法和最新的深度神经网络
- sklearn kmeans 聚类中心_Kmeans聚类算法
weixin_39997695
sklearnkmeans聚类中心
1引例经过前面一些列的介绍,我们已经接触到了多种回归和分类算法。并且这些算法有一个共同的特点,那就是它们都是有监督的(supervised)学习任务。接下来,笔者就开始向大家介绍一种无监督的(unsupervised)经典机器学习算法——聚类。同时,由于笔者仅仅只是对Kmeans框架下的聚类算法较为熟悉,因此在后续的几篇文章中笔者将只会介绍Kmeans框架下的聚类算法,包括:Kmeans、Kmea
- 机器学习算法之逻辑回归算法(Logistic Regression)
迎风斯黄
数学建模美赛机器学习算法回归
逻辑回归算法是一种用于分类问题的经典机器学习算法。虽然它的名字中带有“回归”,但实际上逻辑回归用于解决分类问题,特别是二分类问题。本篇博文将详细介绍逻辑回归算法的工作原理、应用领域以及Python示例。算法背景逻辑回归起源于20世纪初,用于分析生存率数据。随后,它被广泛应用于医学、社会科学、经济学和工程学等领域。在机器学习中,逻辑回归通常用于解决以下问题:信用评分垃圾邮件分类疾病诊断用户流失预测金
- ChatGPT4在Python数据分析、自动生成代码等方面的强大功能丨人工智能领域经典机器学习算法丨热门深度学习方法及Python、PyTorch代码实现方法
小艳加油
语言类pythonChatGPT人工智能数据分析数据可视化
帮助广大科研人员更加熟练地掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学
- Python+ChatGPT,Python与ChatGPT结合进行数据分析、自动生成代码、人工智能建模、论文高效撰写等
WangYan2022
数据语言python数据分析chatgpt机器学习深度学习
熟练地掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM
- 学习笔记:机器学习
howard2005
数据挖掘基础学习笔记机器学习
文章目录一、机器学习概述二、机器学习活跃领域(一)数据分析与数据挖掘(二)人工智能——图像和语音识别三、经典机器学习算法(一)线性回归(二)逻辑回归(三)决策树(四)随机森林(五)k-近邻(KNN)(六)支持向量机(SVM)(七)k-means四、监督学习与无监督学习(一)监督学习概念(二)无监督学习概念(三)补充学习模式1、半监督学习2、主动学习五、数据挖掘的应用(一)市场分析与管理(二)风险分
- 最新PyTorch机器学习与深度学习实践技术应用
asyxchenchong888
机器学习机器学习深度学习pytorch
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。因此,为了帮助广大科研人员更加系统地学习深度学习的基础理论知识及对应的Pytorch代码实现方法,掌握深度学习的基础知识,与经典机器学习算法
- 2018文章集合
罗罗攀
2018年公众号文章集合,过年在家系统学习下。机器学习实战该系列讲解了经典机器学习算法的原理(KNN,决策树,SVM,k-means,pca等),并从伪代码入手,一步步深入到各种算法的Python实现。机器学习实战之KNN算法机器学习实战之朴素贝叶斯机器学习实战之决策树机器学习实战之Logistic回归机器学习实战之AdaBoost元算法机器学习实战之线性回归机器学习实战之树回归机器学习实战之K-
- 【量子机器学习】量子机器学习的介绍
gezigezao
机器学习量子计算人工智能
量子机器学习:解锁未来的计算潜能随着科技的迅速进步,量子机器学习(QML)作为量子计算和机器学习的完美融合,为我们带来了前所未有的计算潜能。在这个新兴领域中,量子神经网络(QNN)是一个备受关注的算法,与传统的经典机器学习算法有着明显的不同。1.量子神经网络(QNN)与经典机器学习的对比1.1信息处理单位QNN:使用量子比特(qubit)作为信息处理的基本单元,允许信息在0和1的状态中叠加。经典机
- IBM Qiskit量子机器学习教程翻译:第三章 数据编码
溴锑锑跃迁
机器学习人工智能量子力学量子计算python量子机器学习
数据编码在这一页中,我们将介绍量子机器学习的数据编码问题,然后描述和实现各种数据编码方法。介绍数据表示对于机器学习模型的成功至关重要。对于经典机器学习来说,问题是如何用数字表示数据,以便经典机器学习算法对数据进行最好的处理。对于量子机器学习来说,这个问题是类似的,但更基本:如何将数据表示并有效地输入到量子系统中,从而可以通过量子机器学习算法进行处理。这通常称为数据编码,但也称为数据嵌入或加载。这个
- 【PyTorch】深度学习实践 1. Overview
令夏二十三
NLP学习路线深度学习人工智能
目录人工智能概述课程前置知识人工智能问题分类推理类预测类算法分类传统算法与智能算法人工智能领域细分学习系统的发展基于规则的系统经典机器学习算法表示学习方法维度诅咒说明解决方法第一代第二代(深度学习)传统机器学习策略神经网络基础基本原理正向传播和反向传播正向传播反向传播小结人工智能概述课程前置知识线性代数+概率论(不要有路径依赖,遇到不会的就现学)Python基础人工智能问题分类人工智能,实际上就是
- 准备好春招了么?上科大小哥的面试题与复习资料祝你寒假无忧
计算机与软件考研
选自Github转载于机器之心去年上海科技大学AI实验室开源了一份深度学习面试题集锦,它从数学基础、经典机器学习算法、深度学习算法以及编程语言等方面提供了众多面试题。此外,这一个项目是作者在准备2018年春招实习过程中的总结,内容以计算机书籍的学习笔记为主,在整理重点知识的同时会尽量保证知识的系统性。读者们快来试试能闯过多少道春招面试题吧!项目地址:https://github.com/Shang
- Java应用|使用Apache Spark MLlib构建机器学习模型
青年老年程序员
javaapachespark-ml
如果您觉得本博客的内容对您有所帮助或启发,请关注我的博客,以便第一时间获取最新技术文章和教程。同时,也欢迎您在评论区留言,分享想法和建议。谢谢支持!一、引言1.1SparkMLlib简介ApacheSparkMLlib(MachineLearninglibrary)是一个开源机器学习框架,建立在ApacheSpark之上,支持分布式计算和大规模数据处理。它提供了许多经典机器学习算法和工具,如分类、
- 传统机器学习
aaa小菜鸡
2019-06-23PCA主成分分析法PrincipleComponentsAnalysis逻辑清晰,入门理解一下:深入了解一下十大经典机器学习算法之一:PCA算法简单实例理解一下:PCA降维实例分析是一种降维手段,在保留数据绝大多数信息的情况下。第一个轴是方差最大的,第二个轴是与第一个轴正交且方差最大的轴,第三个轴是与前两个轴正交且方差最大的轴。AdaBoost看里面的例子回忆了一下:AdaBo
- 机器学习十大经典算法
智慧医疗探索者
经典机器学习算法机器学习算法人工智能
机器学习算法是计算机科学和人工智能领域的关键组成部分,它们用于从数据中学习模式并作出预测或做出决策。本文将为大家介绍十大经典机器学习算法,其中包括了线性回归、逻辑回归、支持向量机、朴素贝叶斯、决策树等算法,每种算法都在特定的领域发挥着巨大的价值。1线性回归线性回归算得上是最流行的机器学习算法之一,它是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,目前线性回
- 经典机器学习算法的极简实现(Python+NumPy)
木亦有知
大三的时候曾花两个星期学习了几个经典的机器学习算法,学习方法主要是白天参考《统计学习方法》推导公式,晚上利用公式编写实现。在参考GitHub上算法实现时,我发现其中大多数都比较繁杂冗长,很难体现出算法的核心思想。因此我特地找出了以前的机器学习算法实现,在修改整理后分享给大家(GitHub地址)。所有算法的实现都没有使用其他机器学习库。希望可以帮助大家对机器学习算法及其本质原理有个基本的了解,但并不
- 制定机器学习规划路线:从入门到专业
小馒头学python
机器学习机器学习人工智能
文章目录第一阶段:入门基础了解机器学习概念学习编程和数学基础探索经典机器学习算法完成实践项目第二阶段:深入学习掌握深度学习基础学习深度学习框架探索最新研究进展完成高级项目第三阶段:专业实践深入研究特定领域参与开源项目或竞赛深度优化和调优关注伦理问题和社会影响结论第一阶段:入门基础了解机器学习概念首先,对机器学习的基本概念进行学习。了解监督学习、无监督学习、强化学习等的原理和应用领域。学习编程和数学
- 经典机器学习算法之GBDT算法
今天上上签
小白的经典机器学习算法机器学习算法决策树
本篇文章旨在让完全不懂的小伙伴对该算法有一个初步认识与理解,只适用于小白文章目录1.基本概念和基本原理2.形式描述基本形式描述目标函数描述优化求解描述3.构造GBDT1.基本概念和基本原理GBDT(GradientBoostingDecisionTrees,梯度提升决策树)是一种迭代的决策树算法,由多棵决策树组成,所有树的结论累加起来作为最终答案,我们根据其名字来展开推导过程是一种集成学习方法,通
- 《机器学习算法的数学解析与Python实现》读书笔记:第11章 集成学习方法
非文的NLP修炼笔记
#机器学习集成学习python
目录第11章集成学习方法11.1集成学习方法:三个臭皮匠赛过诸葛亮11.1.1集成学习方法与经典机器学习算法的关系11.1.2集成学习的主要思想11.1.3几种集成结构11.2集成学习方法的具体实现方式11.2.1Bagging算法11.2.2Boosting算法11.2.3Stacking算法11.3在Python中使用集成学习方法11.4集成学习方法的使用场景第11章集成学习方法在学习的时候,
- 一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)
快乐江湖
机器学习支持向量机算法
文章目录一:概述二:间隔与支持向量三:对偶问题(1)什么是对偶问题(2)SVM对偶问题(3)SMO算法四:核函数(1)核函数的概述和作用(2)求解之前所介绍的逻辑回归是基于似然度的分类方法,通过对数据概率进行建模来得到软输出。但这种分类方法其实稍加“繁琐”,因为要估计数据的概率分布作为中间步骤。这就像当一个人学习英语时,他只要直接报个班或者自己看书就行了,而不需要先学习诘屈聱牙的拉丁语作为基础。既
- 2-5.2 经典机器学习算法-SVM算法优缺点、超参数调节、核函数选择、软硬间隔的推导过程
沉睡的小卡比兽
AI基础知识支持向量机SVMSVM硬间隔SVM软间隔核函数
1、SVM算法的优缺点2、SVM的超参数C如何调节3、SVM核函数如何选择4、简述SVM硬间隔推导过程5、简述SVM软间隔推导过程1、SVM算法的优缺点优点:(1)可以解决高维特征的分类和回归问题(2)模型最终结果无需依赖全体样本,只需依赖支持向量(3)有已经研究好的核技巧可以使用,可以应对线性不可分的问题(4)样本量中等偏小的情况也有较好的效果,有一点泛化能力和鲁棒性。这也是深度学习热门起来之前
- PyTorch机器学习与深度学习技术方法与案例
xiao5kou4chang6kai4
生态遥感水文深度学习机器学习pytorch
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱旨在帮助广大科研人员更加系统地学习深度学习的基础理论知识及对应的Pytorch代码实现方法帮助您掌握深度学习的基础知识,与经典机器学习算法的区
- 【代码实现】最新PyTorch机器学习与深度学习技术方法
weixin_贾楠
python深度学习MATLAB编程PythonMATLAB经验分享python深度学习机器学习c语言
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。本次内容在掌握深度学习的基础知识,与经典机器学习算法的区别与联系,以及最新的迁移学习、循环神经网络、长短时记忆神经网络、时间卷积网络、对抗生
- Python实现逻辑回归(Logistic Regression)
海洋.之心
机器学习经典算法实现python逻辑回归机器学习人工智能sklearn
项目专栏:【Python实现经典机器学习算法】附代码+原理介绍文章目录前言一、基于原生Python实现逻辑回归算法二、逻辑回归模型的算法原理三、算法实现3.1导包3.2定义随机数种子3.3定义逻辑回归模型3.3.1模型训练3.3.1.1初始化参数3.3.1.2正向传播3.3.1.3损失函数3.3.1.4反向传播3.3.2模型预测3.3.3模型分数3.3.4LogisticRegression模型3
- Python实现朴素贝叶斯(Naive Bayes)
海洋.之心
机器学习经典算法实现python机器学习开发语言人工智能sklearn
项目专栏:【Python实现经典机器学习算法】附代码+原理介绍文章目录前言一、基于原生Python实现朴素贝叶斯(NaiveBayes)二、常见概念介绍三、朴素贝叶斯的算法原理四、算法实现4.1导包4.2定义随机数种子4.3定义朴素贝叶斯模型4.3.1模型训练4.3.2模型预测4.3.3模型分数4.3.4NaiveBayes模型4.4导入数据4.5划分训练集、测试集4.6模型训练4.7打印结果4.
- 手推公式+项目实操复现!《机器学习》完整详解
zenRRan
算法人工智能编程语言数据分析大数据
相信很多朋友对机器学习算法都有所了解,有尝试学习并利用机器学习算法以及工具做一些AI产品!但是仅仅停留在“调包”的阶段。想去深入理解一些算法的核心内涵却被XGBoost|GBDT等算法劝退了!为了满足全民学习AI的需求,给大家推荐一款轻松入门机器学习算法课程,涵盖17大经典机器学习算法模型,21+案例练习,8大项目实战。今日开课,限100个体验名额01十七大经典算法模型|K-NN最近邻|线性回归|
- Python机器学习:多个模型的调用
紫昂张
Python机器学习pythonsklearn
在做项目的过程中一个个模型地试验太耗费时间,我们可以把多个模型封装到一个方法里,一起调用,统一输出结果,这样对比不同模型的得分就非常便捷啦。基础的分类算法大全(前8个是十大经典机器学习算法里面的):英文简称模型调用LRLogisticRegression()fromsklearn.linear_modelimportLogisticRegressionNBMultinomialNB()fromsk
- 图解十大经典机器学习算法
欣一2002
算法决策树大数据python机器学习
本文利用图解的方式介绍了10大常见的机器学习算法。在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。举个例子来说,你不能说神经网络永远比决策树好,反之亦然。模型运行被许多因素左右,例如数据集的大小和结构。因此,你应该根据你的问题尝试许多不同的算法,同时使用数据测试集来评估性能并选出最优项。当然,
- 【综述】机器学习中的12类算法
IT农民工1
算法聚类机器学习人工智能深度学习
公众号后台回复“图书“,了解更多号主新书内容 作者:luanhz 来源:小数志导读最近在研究一些机器学习方面的论文,翻到了一篇较早的机器学习综述(2017年),虽然不是最新的研究现状,但考虑到经典机器学习算法其实发展并不像深度学习那么迅猛,所以其论述还是很有参考性。本文就其中关于机器学习算法分类的一段进行选摘翻译,以供参考。原文链接可通过阅读原文查阅。以下译文选摘自2017年发表在IJIR
- 支持向量机算法模型
帅帅de三叔
机器学习python
目录前言从数据的线性可分到间隔最大化对偶算法线性支持向量机与非线性支持向量机实践案例前言从这一期开始,我们准备介绍一系列经典机器学习算法模型,主要包括逻辑回归,支持向量机,决策树,因子分析,主成分分析,K-Means聚类,多元线性回归,时间序列,关联规则,朴素贝叶斯,隐式马尔可夫,协同过滤,随机森林,XGBoost,LightGBM等,一般会涵盖算法模型的引入背景,算法模型依赖的数学原理,算法模型
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo