Codeforces Good Bye 2019 G. Subset with Zero Sum

题意:
给出n个整数 a , a 2 , a 3 . . . a n a_,a_2,a_3...a_n a,a2,a3...an 1 ≤ i ≤ n 1≤i≤n 1in i − n ≤ i − 1 i-n≤i-1 ini1,现在需要你找出任意一个子序列使这个子序列的和为0


题解:
首先注意到 i − n ≤ a i ≤ i − 1 i-n≤a_i≤i-1 inaii1,那么 1 ≤ i − a i ≤ n 1≤i-a_i≤n 1iain

考虑构造一个点数为n的有向图,建 i i i i − a [ i ] i-a[i] ia[i] 1 ≤ i ≤ n 1≤i≤n 1in的有向边2

那么只要能找到这个有向图的其中一个环即可

因为:

i 1 − a i 1 = i 2 i_1-a_{i_1} = i_2 i1ai1=i2
i 2 − a i 2 = i 3 i_2-a_{i_2} = i_3 i2ai2=i3

i n − a i n = i 1 i_n-a_{i_n} = i_1 inain=i1

两边相加即可得到 ∑ j = 1 k a i j = 0 \sum_{j=1}^{k}a_{i_j} = 0 j=1kaij=0

所以我们只需要dfs判环就ok啦


AC代码:

#pragma GCC optimize(2)
#include
#include
using namespace std;
using namespace __gnu_cxx;
#define LL long long
#define pii pair
#define mp(a,b) make_pair(a,b)
const int MAXN = 1e6+10;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int a[MAXN],head[MAXN],tot,ans; bool vis[MAXN];
struct node{ int v,nxt; }edge[MAXN<<1];
inline void add(int u,int v){
    edge[++tot].v=v; edge[tot].nxt=head[u]; head[u]=tot;
}
void dfs(int u){
    vis[u]=1;
    for(int i=head[u];i;i=edge[i].nxt){
        int v = edge[i].v;
        if(vis[v]){ ans = v; return; }
        dfs(v);
    }
}
signed main(){
#ifndef ONLINE_JUDGE
    freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUDGE
    int T; scanf("%d",&T);
    while(T--){
        int n; scanf("%d",&n); tot=0;
        for(int i=1;i<=n;i++) vis[i]=0,head[i]=0;
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        for(int i=1;i<=n;i++) add(i,i-a[i]);
        dfs(1); vector<int> res;
        int u=ans-a[ans]; res.push_back(ans);
        while(u!=ans){
            res.push_back(u);
            u = u-a[u];
        }
        printf("%d\n",res.size());
        for(int i=0;i<res.size();i++) printf("%d ",res[i]);
        puts("");
    }
    return 0;
}

你可能感兴趣的:(思维题)