FJ
and his cows enjoy playing a mental game. They write down the numbers from 11 toN(1≤N≤10)N(1≤N≤10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when N=4N=4) might go like this:
Behind FJ
's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number NN. Unfortunately, the game is a bit above FJ
's mental arithmetic capabilities.
Write a program to help FJ
play the game and keep up with the cows.
有这么一个游戏:
写出一个11至NN的排列aiai,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少11,直到只剩下一个数字位置。下面是一个例子:
3,1,2,43,1,2,4
4,3,64,3,6
7,97,9
1616
最后得到1616这样一个数字。
现在想要倒着玩这样一个游戏,如果知道NN,知道最后得到的数字的大小sumsum,请你求出最初序列aiai,为11至NN的一个排列。若答案有多种可能,则输出字典序最小的那一个。
[color=red]管理员注:本题描述有误,这里字典序指的是1,2,3,4,5,6,7,8,9,10,11,121,2,3,4,5,6,7,8,9,10,11,12
而不是1,10,11,12,2,3,4,5,6,7,8,91,10,11,12,2,3,4,5,6,7,8,9[/color]
两个正整数n,sumn,sum。
输出包括11行,为字典序最小的那个答案。
当无解的时候,请什么也不输出。(好奇葩啊)
对于40%40%的数据,n≤7n≤7;
对于80%80%的数据,n≤10n≤10;
对于100%100%的数据,n≤12,sum≤12345n≤12,sum≤12345。
include
using namespace std;
int n,sum,pos[20]={-1},coef[20][20];
bool f[20]={false};
void cal_cofe(){ //计算杨辉三角系数
for(int i=1;i<=n;i++){
coef[i][1]=1;
for(int j=2;jsum)return true;
}
return false;
}
void dfs(int i){
if(i==n+1){
int s=0;
for (int j=1; j<=n; j++) {
s+=pos[j]*coef[n][j];
if(s>sum)return;
}
if(s==sum){
for(int j=1;j<=n;j++)
if(j==1)printf("%d",pos[j]);
else printf(" %d",pos[j]);
exit(0);
}
}
for(int j=1;j<=n;j++)
if(!f[j]){
f[j]=true;
pos[i]=j;
if(!if_cut(i))dfs(i+1);
f[j]=false;
pos[i]=-1;
}
}
int main() {
scanf("%d %d",&n,&sum);
cal_cofe();
dfs(1);
return 0;
}