- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 机器人学中的数值优化(一)
Big David
数值优化数值优化
Preliminaries0前言最优解x∗x^{*}x∗在满足约束的所有向量中具有最小值。两个基本的假设:(1)目标函数有下界目标函数不能存在负无穷的值,这样会使得最小值无法在计算机中用浮点数表示,最小值可以很小但必须有界(2)目标函数具有有界子区间映射sub-levelsets就是下水平集,此时要求目标函数不能存在当x趋于无穷时函数趋于某个值即下水平集无界,这同样会导致最小值无法用浮点数表示f,
- 非精线搜索步长规则Armijo规则&Goldstein规则&Wolfe规则
Nie_Xun
算法
非精确线搜索步长规则在数值优化中,线搜索是一种寻找合适步长的策略,以确保在目标函数上获得足够的下降。如最速下降法,拟牛顿法这些常用的优化算法等,其中的线搜索步骤通常使用Armijo规则、Goldstein规则或Wolfe规则等。设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn参数迭代过程:xk+1←xk+αkdkx_
- 机器人中的数值优化进阶|【二】三次样条曲线推导(中)
影子鱼Alexios
algorithm机器人线性代数矩阵
机器人中的数值优化|【自用二】三次样条曲线推导接之前,由于ci=3(ηi+1−ηi)−2Di−Di+1c_i=3(\eta_{i+1}-\eta_i)-2D_i-D_{i+1}ci=3(ηi+1−ηi)−2Di−Di+1因此有c=3[−1100...00−110...000−11...0......000...−11]n×(n+1)η−[2100...00210...00011...0......
- 机器人中的数值优化进阶|【三】三次样条曲线推导(下)
影子鱼Alexios
algorithm机器人
机器人中的数值优化进阶|【三】三次样条曲线推导(下)接之前的内容,现在开始考虑势场函数P(η1,...,ηn−1)=1000∑i=1n−1∑j=0mmax(rj−∣∣ηi−oj∣∣,0)P(\eta_1,...,\eta_{n-1})=1000\sum_{i=1}^{n-1}\sum_{j=0}^{m}\max(r_j-||\eta_i-o_j||,0)P(η1,...,ηn−1)=1000i=
- 机器人中的数值优化进阶|【一】三次样条曲线推导(上)
影子鱼Alexios
algorithm机器人线性代数
机器人中的数值优化进阶|【一】三次样条曲线推导(上)三次样条曲线的定义在三次样条曲线中,样条曲线通过一系列控制点η=[η0,η1,...ηn]\eta=[\eta_0,\eta_1,...\eta_n]η=[η0,η1,...ηn]来实现对样条曲线的生成。控制点意味着样条曲线必然要经过这几个点。对于每一段曲线,都可以由s∈[0,1]s\in[0,1]s∈[0,1]来表征曲线,其定义为pi(s)=a
- isight调用matlab 遗传算法,ISIGHT优化算法分类
冯妥坨
isight调用matlab遗传算法
马上注册,结识更多同行,享用更多资源!您需要登录才可以下载或查看,没有帐号?注册xISIGHT中的单目标优化算法大致可分为以下三类:1数值优化方法数值优化算法通常假定设计空间是单峰,连续且凸的。在isight中提供的数值优化方法有:修正的可行方向法(ModifiedMethodofFeasibleDirections)广义下降梯度法(LargeScaleGeneralizedReducedGrad
- 运筹系列87:julia求解随机动态规划问题入门
IE06
运筹学julia动态规划代理模式
随机动态规划问题的特点是:有多个阶段,每个阶段的随机性互不相关,且有有限个实现值(finiterealizations)具有马尔可夫性质,即每个阶段只受上一个阶段影响,可以用状态转移方程来描述阶段与阶段之间的变化过程。我们使用julia的SDDP算法包来求解随机动态规划问题。1.入门案例:LinearPolicyGraph看一个简单的数值优化的例子:我们将其建立为一个N阶段的问题:初始值为M。使用
- 机器人中的数值优化之罚函数法
无意2121
数值优化算法机器人自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1L2-PenaltyMethod1.1等式约束1.2不等式约束2L1-PenaltyMethod3BarrierMethod1L2-PenaltyMethod1.1等式约束对于等式约束,罚函数可以惩罚不满足等式约束的点
- UCB Data100:数据科学的原理和技巧:第十三章到第十五章
绝不原创的飞龙
数据科学python
十三、梯度下降原文:GradientDescent译者:飞龙协议:CCBY-NC-SA4.0学习成果优化复杂模型识别直接微积分或几何论证无法帮助解决损失函数的情况应用梯度下降进行数值优化到目前为止,我们已经非常熟悉选择模型和相应损失函数的过程,并通过选择最小化损失函数的θ\thetaθ的值来优化参数。到目前为止,我们已经通过以下两种方法优化了θ\thetaθ:1.使用微积分对损失函数关于θ\the
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 基于优化的规划方法 - 数值优化基础 Frenet和笛卡尔的转换 问题建模 实现基于QP的路径优化算法
Big David
MotionplanningPlanning模块优化数值优化Frenet问题建模规划算法OSQP
本文讲解基于优化的规划算法,将从以下几个维度讲解:数值优化基础、Frenet与Cartesian的相互转换、问题建模OSQP1数值优化基础1.1优化的概念一般优化问题公式:f(x)f(x)f(x):目标/成本函数xxx:决策变量SSS:可行域|约束集Example:A点是最优值全局最优和局部最优的概念:1.2无约束优化当函数f可微,要成为局部最小值的必要条件是▽f(x)=0\bigtriangle
- 机器人中的数值优化之线性共轭梯度法
无意2121
数值优化算法自动驾驶机器人
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1.无约束优化方法对比2.Hessian-vecproduct3.线性共轭梯度方法的步长编辑4.共轭梯度方向的求解5.线性共轭梯度方法整体流程1.无约束优化方法对比拟牛顿方法和牛顿共轭梯度方法是最优的,实现收敛速率与it
- 拓展进阶:Python 中 Scipy 的优化与拟合
theskylife
数据分析数据挖掘pythonscipy开发语言数据分析
写在开头在我们的Python科学计算之旅中,我们已经学习了Scipy库的基础功能,涉及数学运算、数据处理、统计分析等方面。然而,在实际的数据分析和科学研究中,我们经常面临着需要进一步优化算法和拟合数据的需求。本文将深入研究Scipy中的优化与拟合功能,探讨如何在实际问题中应用这些高级功能。1数值优化在实际的数据分析和科学研究中,我们常常面临着需要最小化或最大化某个目标函数的问题。Scipy的opt
- PSO粒子群算法
竹竹竹~
论文阅读算法
PSO通过最优化算法来自动进行参数搜索。算法基本原理:将鸟群觅食行为、算法原理和融合策略参数搜索对应,如下图:鸟群觅食粒子群算法融合策略参数搜索鸟粒子参数组森林求解空间参数空间食物的量目标函数值优化目标值每只鸟所处位置空间中的一个解(粒子位置)参数空间中的一组参数食物量最多的位置全局最优解最优参数组PSO算法适用性分析:PSO算法是一种随机的、并行的优化算法。优点:不要求被优化函数具有可微、可导、
- 强化学习算法TRPO的理解
北山杉林
算法人工智能强化学习
TrustRegionPolicyOptimization角度一:off-policy重要性采样ImportanceSampling梯度优化角度二:数值优化置信域优化蒙特卡洛近似TRPO算法的全称是TrustRegionPolicyOptimization,即信赖域策略优化。角度一:off-policy通常在强化学习策略梯度训练中,智能体每跟环境做一次完整的交互得到一条蒙特卡洛采样轨迹,策略网络的
- 智能优化算法-Tiki-taka算法Tiki Taka Algorithm(附Matlab代码)
88号技师
智能优化算法算法matlab开发语言启发式算法元启发式
引言本文介绍一种基于足球战术tiki-taka的新颖的运动灵感算法——Tiki-taka算法TikiTakaAlgorithm,TTA,用于数值优化和工程设计。该成果于2020年发表在EngineeringComputations。参考文献Rashid,MohdFadzilFaisaeAb.“Tiki-TakaAlgorithm:aNovelMetaheuristicInspiredbyFootb
- Nelder-Mead算法(智能优化之下山单纯形法)
想不到名字222
算法python
Nelder-Mead算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值Nelder-Mead方法也称下山单纯形法,是由JohnNelder&RogerMead于1965年提出的一种求解数值优化问题的启发式搜索给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为开始按以下算
- 显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优
KAU的云实验台
MATLAB算法
鲸鱼优化算法(whaleoptimizationalgorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,与其它群体智能优化算法相比,WOA算法结构新颖,控制参数少,在许多数值优化和工程问题的求解中表现出较好的寻优性能,优于蚁群算法和粒子群算法等智能优化算法。WOA算法在面对多变量复杂问题时也存在搜
- 算法工程师护城河
韩师兄_
算法人工智能
目录一、大学打基础二、研究生进阶三、算法工程师护城河四、人生护城河五、小结5.1、35岁前的护城河5.2、35岁后的护城河下面是本人朋友的例子。一、大学打基础我是大学本科是计算机专业。在我上大学的时候,那时候是真的不懂算法人工智能,只是觉得这玩意高大上。学好很多专业课,只是为了拿奖学金,至于有什么用,我也不知道。但是在学期间认真学,多年以后,你一定会感谢当年的自己。例如:《信号系统》、《数值优化》
- 数学建模算法汇总
Believe yourself!!!
matlab数学建模算法动态规划线性代数
优化模型优化模型(1)三要素:决策变量、目标函数、约束单目标优化,多目标优化,数值优化,组合优化_luolang_103的博客-CSDN博客_单目标优化单目标(Single-ObjectiveOptimizationProblem)所评测目标只有一个,只需要根据具体的满足函数条件,求得最值多目标(Multi-objectiveOptimizationProblem)多目标优化问题中,同时存在多个最
- PyTorch入门学习(十四):优化器
不吃花椒的兔酱
PyTorchpytorch学习深度学习
目录一、优化器的重要性二、PyTorch中的深度学习三、优化器的选择一、优化器的重要性深度学习模型通常包含大量的参数,因此训练过程涉及到优化这些参数以减小损失函数的值。这个过程类似于找到函数的最小值,但由于模型通常非常复杂,所以需要依赖数值优化算法,即优化器。优化器的任务是调整模型参数,以最小化损失函数,从而提高模型的性能。二、PyTorch中的深度学习PyTorch是一个流行的深度学习框架,它提
- 机器学习中为什么需要梯度下降_机器学习数值优化入门:梯度下降
weixin_39913141
机器学习中为什么需要梯度下降
今天我们尝试用最简单的方式来理解梯度下降,在之后我们会尝试理解更复杂的内容,也会在各种各样的案例中使用梯度下降来求解(事实上之前线性回归模型中我们已经使用了它),感兴趣的同学欢迎关注后续的更新(以及之前的内容)。梯度下降的原理在数据科学中,我们经常要寻找某个模型的最优解。梯度下降就是数值优化问题的一种方案,它能帮助我们一步步接近目标值。在机器学习过程中,这个目标值往往对应着“最小的残差平方和”(比
- CAD模型旋转和AX=B的数值方法——《数值计算方法》
Dropdrag
线性代数矩阵算法
《数值计算方法》系列总目录第一章误差序列实验第二章非线性方程f(x)=0求根的数值方法第三章CAD模型旋转和AX=B的数值方法第四章插值与多项式逼近的数值计算方法第五章曲线拟合的数值方法第六章数值微分计算方法第七章数值积分计算方法第八章数值优化方法第三章一、算法原理1、CAD模型旋转原理2、三角分解法原理3、雅可比迭代法和高斯-赛德尔迭代法二、实验内容及核心算法代码1、CAD模型旋转原理实现2、三
- 激活函数小结:ReLU、ELU、Swish、GELU等
chencjiajy
深度学习激活函数深度学习
文章目录SigmoidTanhReLULeakyReLUPReLUELUSoftPlusMaxoutMishSwishGELUSwiGLUGEGLU资源激活函数是神经网络中的非线性函数,为了增强网络的表示能力和学习能力,激活函数有以下几点性质:连续且可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数。激活函数及其导函数要尽可能的简单,有利于提高网络计算效
- 常见的C/C++开源QP问题求解器
罗伯特祥
▶Algorithm/AIqp
1.qpSWIFTqpSWIFT是面向嵌入式和机器人应用的轻量级稀疏二次规划求解器。它采用带有MehrotraPredictor校正步骤和NesterovTodd缩放的Primal-DualInterioirPoint方法。开发语言:C文档:传送门项目:传送门2.OSQPOSQP(算子分裂二次规划)求解器是一个数值优化包,用于求解以下形式的凸二次规划:minimize12xTPx+qTxsubje
- 机器人中的数值优化(二十一)—— 伴随灵敏度分析、线性方程组求解器的分类和特点、优化软件
慕羽★
数值优化方法机器人人工智能数值优化最优化方法机器学习线性方程组求解器优化软件
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十三、伴随灵敏度分析 伴随灵敏度分析可以避免冗余信息的计算,在下面的例子中,我们想要求解Ax=b1、Ax=b2…Ax
- 机器人中的数值优化(四)—— 线搜索求步长(附程序实现)
慕羽★
数值优化方法机器人人工智能数值优化线搜索求步长机器学习
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 六、线搜索求步长 1、0.618方法 0.618方法方法适合于单峰函数,既具有“高-低-高”形状的函数,然而,在众多问题
- 机器人中的数值优化(二十)——函数的光滑化技巧
慕羽★
数值优化方法机器人最优化方法数值优化机器学习运动规划
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十二、函数的光滑化技巧 1、Infconvolution卷积操作 Infconvolution卷积操作适应于凸函数
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f