- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 机器人学中的数值优化(一)
Big David
数值优化数值优化
Preliminaries0前言最优解x∗x^{*}x∗在满足约束的所有向量中具有最小值。两个基本的假设:(1)目标函数有下界目标函数不能存在负无穷的值,这样会使得最小值无法在计算机中用浮点数表示,最小值可以很小但必须有界(2)目标函数具有有界子区间映射sub-levelsets就是下水平集,此时要求目标函数不能存在当x趋于无穷时函数趋于某个值即下水平集无界,这同样会导致最小值无法用浮点数表示f,
- 非精线搜索步长规则Armijo规则&Goldstein规则&Wolfe规则
Nie_Xun
算法
非精确线搜索步长规则在数值优化中,线搜索是一种寻找合适步长的策略,以确保在目标函数上获得足够的下降。如最速下降法,拟牛顿法这些常用的优化算法等,其中的线搜索步骤通常使用Armijo规则、Goldstein规则或Wolfe规则等。设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn参数迭代过程:xk+1←xk+αkdkx_
- 机器人中的数值优化进阶|【二】三次样条曲线推导(中)
影子鱼Alexios
algorithm机器人线性代数矩阵
机器人中的数值优化|【自用二】三次样条曲线推导接之前,由于ci=3(ηi+1−ηi)−2Di−Di+1c_i=3(\eta_{i+1}-\eta_i)-2D_i-D_{i+1}ci=3(ηi+1−ηi)−2Di−Di+1因此有c=3[−1100...00−110...000−11...0......000...−11]n×(n+1)η−[2100...00210...00011...0......
- 机器人中的数值优化进阶|【三】三次样条曲线推导(下)
影子鱼Alexios
algorithm机器人
机器人中的数值优化进阶|【三】三次样条曲线推导(下)接之前的内容,现在开始考虑势场函数P(η1,...,ηn−1)=1000∑i=1n−1∑j=0mmax(rj−∣∣ηi−oj∣∣,0)P(\eta_1,...,\eta_{n-1})=1000\sum_{i=1}^{n-1}\sum_{j=0}^{m}\max(r_j-||\eta_i-o_j||,0)P(η1,...,ηn−1)=1000i=
- 机器人中的数值优化进阶|【一】三次样条曲线推导(上)
影子鱼Alexios
algorithm机器人线性代数
机器人中的数值优化进阶|【一】三次样条曲线推导(上)三次样条曲线的定义在三次样条曲线中,样条曲线通过一系列控制点η=[η0,η1,...ηn]\eta=[\eta_0,\eta_1,...\eta_n]η=[η0,η1,...ηn]来实现对样条曲线的生成。控制点意味着样条曲线必然要经过这几个点。对于每一段曲线,都可以由s∈[0,1]s\in[0,1]s∈[0,1]来表征曲线,其定义为pi(s)=a
- isight调用matlab 遗传算法,ISIGHT优化算法分类
冯妥坨
isight调用matlab遗传算法
马上注册,结识更多同行,享用更多资源!您需要登录才可以下载或查看,没有帐号?注册xISIGHT中的单目标优化算法大致可分为以下三类:1数值优化方法数值优化算法通常假定设计空间是单峰,连续且凸的。在isight中提供的数值优化方法有:修正的可行方向法(ModifiedMethodofFeasibleDirections)广义下降梯度法(LargeScaleGeneralizedReducedGrad
- 运筹系列87:julia求解随机动态规划问题入门
IE06
运筹学julia动态规划代理模式
随机动态规划问题的特点是:有多个阶段,每个阶段的随机性互不相关,且有有限个实现值(finiterealizations)具有马尔可夫性质,即每个阶段只受上一个阶段影响,可以用状态转移方程来描述阶段与阶段之间的变化过程。我们使用julia的SDDP算法包来求解随机动态规划问题。1.入门案例:LinearPolicyGraph看一个简单的数值优化的例子:我们将其建立为一个N阶段的问题:初始值为M。使用
- 机器人中的数值优化之罚函数法
无意2121
数值优化算法机器人自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1L2-PenaltyMethod1.1等式约束1.2不等式约束2L1-PenaltyMethod3BarrierMethod1L2-PenaltyMethod1.1等式约束对于等式约束,罚函数可以惩罚不满足等式约束的点
- UCB Data100:数据科学的原理和技巧:第十三章到第十五章
绝不原创的飞龙
数据科学python
十三、梯度下降原文:GradientDescent译者:飞龙协议:CCBY-NC-SA4.0学习成果优化复杂模型识别直接微积分或几何论证无法帮助解决损失函数的情况应用梯度下降进行数值优化到目前为止,我们已经非常熟悉选择模型和相应损失函数的过程,并通过选择最小化损失函数的θ\thetaθ的值来优化参数。到目前为止,我们已经通过以下两种方法优化了θ\thetaθ:1.使用微积分对损失函数关于θ\the
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 基于优化的规划方法 - 数值优化基础 Frenet和笛卡尔的转换 问题建模 实现基于QP的路径优化算法
Big David
MotionplanningPlanning模块优化数值优化Frenet问题建模规划算法OSQP
本文讲解基于优化的规划算法,将从以下几个维度讲解:数值优化基础、Frenet与Cartesian的相互转换、问题建模OSQP1数值优化基础1.1优化的概念一般优化问题公式:f(x)f(x)f(x):目标/成本函数xxx:决策变量SSS:可行域|约束集Example:A点是最优值全局最优和局部最优的概念:1.2无约束优化当函数f可微,要成为局部最小值的必要条件是▽f(x)=0\bigtriangle
- 机器人中的数值优化之线性共轭梯度法
无意2121
数值优化算法自动驾驶机器人
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1.无约束优化方法对比2.Hessian-vecproduct3.线性共轭梯度方法的步长编辑4.共轭梯度方向的求解5.线性共轭梯度方法整体流程1.无约束优化方法对比拟牛顿方法和牛顿共轭梯度方法是最优的,实现收敛速率与it
- 拓展进阶:Python 中 Scipy 的优化与拟合
theskylife
数据分析数据挖掘pythonscipy开发语言数据分析
写在开头在我们的Python科学计算之旅中,我们已经学习了Scipy库的基础功能,涉及数学运算、数据处理、统计分析等方面。然而,在实际的数据分析和科学研究中,我们经常面临着需要进一步优化算法和拟合数据的需求。本文将深入研究Scipy中的优化与拟合功能,探讨如何在实际问题中应用这些高级功能。1数值优化在实际的数据分析和科学研究中,我们常常面临着需要最小化或最大化某个目标函数的问题。Scipy的opt
- PSO粒子群算法
竹竹竹~
论文阅读算法
PSO通过最优化算法来自动进行参数搜索。算法基本原理:将鸟群觅食行为、算法原理和融合策略参数搜索对应,如下图:鸟群觅食粒子群算法融合策略参数搜索鸟粒子参数组森林求解空间参数空间食物的量目标函数值优化目标值每只鸟所处位置空间中的一个解(粒子位置)参数空间中的一组参数食物量最多的位置全局最优解最优参数组PSO算法适用性分析:PSO算法是一种随机的、并行的优化算法。优点:不要求被优化函数具有可微、可导、
- 强化学习算法TRPO的理解
北山杉林
算法人工智能强化学习
TrustRegionPolicyOptimization角度一:off-policy重要性采样ImportanceSampling梯度优化角度二:数值优化置信域优化蒙特卡洛近似TRPO算法的全称是TrustRegionPolicyOptimization,即信赖域策略优化。角度一:off-policy通常在强化学习策略梯度训练中,智能体每跟环境做一次完整的交互得到一条蒙特卡洛采样轨迹,策略网络的
- 智能优化算法-Tiki-taka算法Tiki Taka Algorithm(附Matlab代码)
88号技师
智能优化算法算法matlab开发语言启发式算法元启发式
引言本文介绍一种基于足球战术tiki-taka的新颖的运动灵感算法——Tiki-taka算法TikiTakaAlgorithm,TTA,用于数值优化和工程设计。该成果于2020年发表在EngineeringComputations。参考文献Rashid,MohdFadzilFaisaeAb.“Tiki-TakaAlgorithm:aNovelMetaheuristicInspiredbyFootb
- Nelder-Mead算法(智能优化之下山单纯形法)
想不到名字222
算法python
Nelder-Mead算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值Nelder-Mead方法也称下山单纯形法,是由JohnNelder&RogerMead于1965年提出的一种求解数值优化问题的启发式搜索给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为开始按以下算
- 显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优
KAU的云实验台
MATLAB算法
鲸鱼优化算法(whaleoptimizationalgorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,与其它群体智能优化算法相比,WOA算法结构新颖,控制参数少,在许多数值优化和工程问题的求解中表现出较好的寻优性能,优于蚁群算法和粒子群算法等智能优化算法。WOA算法在面对多变量复杂问题时也存在搜
- 算法工程师护城河
韩师兄_
算法人工智能
目录一、大学打基础二、研究生进阶三、算法工程师护城河四、人生护城河五、小结5.1、35岁前的护城河5.2、35岁后的护城河下面是本人朋友的例子。一、大学打基础我是大学本科是计算机专业。在我上大学的时候,那时候是真的不懂算法人工智能,只是觉得这玩意高大上。学好很多专业课,只是为了拿奖学金,至于有什么用,我也不知道。但是在学期间认真学,多年以后,你一定会感谢当年的自己。例如:《信号系统》、《数值优化》
- 数学建模算法汇总
Believe yourself!!!
matlab数学建模算法动态规划线性代数
优化模型优化模型(1)三要素:决策变量、目标函数、约束单目标优化,多目标优化,数值优化,组合优化_luolang_103的博客-CSDN博客_单目标优化单目标(Single-ObjectiveOptimizationProblem)所评测目标只有一个,只需要根据具体的满足函数条件,求得最值多目标(Multi-objectiveOptimizationProblem)多目标优化问题中,同时存在多个最
- PyTorch入门学习(十四):优化器
不吃花椒的兔酱
PyTorchpytorch学习深度学习
目录一、优化器的重要性二、PyTorch中的深度学习三、优化器的选择一、优化器的重要性深度学习模型通常包含大量的参数,因此训练过程涉及到优化这些参数以减小损失函数的值。这个过程类似于找到函数的最小值,但由于模型通常非常复杂,所以需要依赖数值优化算法,即优化器。优化器的任务是调整模型参数,以最小化损失函数,从而提高模型的性能。二、PyTorch中的深度学习PyTorch是一个流行的深度学习框架,它提
- 机器学习中为什么需要梯度下降_机器学习数值优化入门:梯度下降
weixin_39913141
机器学习中为什么需要梯度下降
今天我们尝试用最简单的方式来理解梯度下降,在之后我们会尝试理解更复杂的内容,也会在各种各样的案例中使用梯度下降来求解(事实上之前线性回归模型中我们已经使用了它),感兴趣的同学欢迎关注后续的更新(以及之前的内容)。梯度下降的原理在数据科学中,我们经常要寻找某个模型的最优解。梯度下降就是数值优化问题的一种方案,它能帮助我们一步步接近目标值。在机器学习过程中,这个目标值往往对应着“最小的残差平方和”(比
- CAD模型旋转和AX=B的数值方法——《数值计算方法》
Dropdrag
线性代数矩阵算法
《数值计算方法》系列总目录第一章误差序列实验第二章非线性方程f(x)=0求根的数值方法第三章CAD模型旋转和AX=B的数值方法第四章插值与多项式逼近的数值计算方法第五章曲线拟合的数值方法第六章数值微分计算方法第七章数值积分计算方法第八章数值优化方法第三章一、算法原理1、CAD模型旋转原理2、三角分解法原理3、雅可比迭代法和高斯-赛德尔迭代法二、实验内容及核心算法代码1、CAD模型旋转原理实现2、三
- 激活函数小结:ReLU、ELU、Swish、GELU等
chencjiajy
深度学习激活函数深度学习
文章目录SigmoidTanhReLULeakyReLUPReLUELUSoftPlusMaxoutMishSwishGELUSwiGLUGEGLU资源激活函数是神经网络中的非线性函数,为了增强网络的表示能力和学习能力,激活函数有以下几点性质:连续且可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数。激活函数及其导函数要尽可能的简单,有利于提高网络计算效
- 常见的C/C++开源QP问题求解器
罗伯特祥
▶Algorithm/AIqp
1.qpSWIFTqpSWIFT是面向嵌入式和机器人应用的轻量级稀疏二次规划求解器。它采用带有MehrotraPredictor校正步骤和NesterovTodd缩放的Primal-DualInterioirPoint方法。开发语言:C文档:传送门项目:传送门2.OSQPOSQP(算子分裂二次规划)求解器是一个数值优化包,用于求解以下形式的凸二次规划:minimize12xTPx+qTxsubje
- 机器人中的数值优化(二十一)—— 伴随灵敏度分析、线性方程组求解器的分类和特点、优化软件
慕羽★
数值优化方法机器人人工智能数值优化最优化方法机器学习线性方程组求解器优化软件
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十三、伴随灵敏度分析 伴随灵敏度分析可以避免冗余信息的计算,在下面的例子中,我们想要求解Ax=b1、Ax=b2…Ax
- 机器人中的数值优化(四)—— 线搜索求步长(附程序实现)
慕羽★
数值优化方法机器人人工智能数值优化线搜索求步长机器学习
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 六、线搜索求步长 1、0.618方法 0.618方法方法适合于单峰函数,既具有“高-低-高”形状的函数,然而,在众多问题
- 机器人中的数值优化(二十)——函数的光滑化技巧
慕羽★
数值优化方法机器人最优化方法数值优化机器学习运动规划
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十二、函数的光滑化技巧 1、Infconvolution卷积操作 Infconvolution卷积操作适应于凸函数
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL