- MATLAB使用OMP实现图像的压缩感知实例
superdont
计算机视觉入门matlab计算机视觉图像处理机器学习图像加密人工智能算法
OMP(OrthogonalMatchingPursuit)是一种用于稀疏信号恢复的迭代算法。它的目标是从一组测量值中重建具有少量非零元素的信号。基本步骤以下是OMP算法的简要步骤:初始化残差:将残差初始化为测量向量。迭代过程:a.原子选择:在每次迭代中,从字典中选择与当前残差最相关的原子。b.更新估计:使用所选的原子更新信号的估计。c.更新残差:更新残差,将其减去已匹配的部分。停止条件:重复步骤
- 压缩感知中的稀疏基是什么?
superdont
计算机视觉入门计算机视觉人工智能pythonopencv算法
要压缩感知中,涉及到要将信号转换为稀疏形式。此时,需要用到的就是稀疏基。稀疏基可能是傅里叶基或者小波基。例如,如下参考文献提到:参考基傅里叶基和小波基是用于信号处理和图像处理中的常用数学工具,它们能够帮助我们在不同的基下表示信号,便于对信号的分析、压缩和重建。傅里叶基(FourierBasis):傅里叶基是一组复指数函数(对于连续信号)或者傅里叶级数(对于离散信号),可以用来表示周期性信号。对于任
- 压缩感知常用的测量矩阵
superdont
计算机视觉入门概率论机器学习python算法opencv人工智能计算机视觉
测量矩阵的基本概念在压缩感知(CompressedSensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。测量矩阵的作用测量矩阵的主要作用是从原始高维信号中提取出足够的信息,以便于后续能够从这些较少的信息中准确恢复原信
- 压缩感知或压缩传感
zhoutongchi
特征提取
由来采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指
- 压缩感知(Compressive Sensing)学习
xiaoxixi1918
图像处理
压缩感知(CompressiveSensing)学习之(一)
[email protected]://blog.csdn.net/zouxy09压缩感知(压缩传感,CompressiveSensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D.Donoho(美国科学院院士)、E.Candes(Ridgelet,Curvelet创始人)及华裔科学家T.Tao(2006年菲尔兹奖获得者
- 压缩感知简单介绍
爱学习的一一一
压缩感知网络算法
文章目录前言一、压缩感知是什么?二、压缩感知介绍1、压缩感知的流程2、信号稀疏化表示3、观测矩阵设计4、信号重构总结前言刚接触压缩感知时,面对其概念十分模糊,但是又十分欣赏其作用。在不懈的学习下,算是对压缩感知有了一定的了解啦,在这里将基础知识分享出来,帮助大家一切学习压缩感知~一、压缩感知是什么? 压缩感知(CompressedSensing,CS)是由陶哲轩等人提出的一种用于信息获取的突破性
- 压缩感知
weixin_34185320
人工智能python
2019独角兽企业重金招聘Python工程师标准>>>首先,我们必须要认识到这一点,即CS(CompressedSensing)中的Compressed不同于传统信息论和率失真意义上的compression。在CS中,"Compressed"一词更加准确的描述是一个降维采样的过程,而不是在信源编码意义上的“compression”。在CS中,我们是没有关于原始信号像素域的任何信息,仅仅只有观测域信
- 压缩感知学习资源
zhyoulun
压缩感知压缩感知资源文献编程源码
编程实现:(简单入门)压缩感知正交匹配追踪算法重构二维图像(专业程序)l1-magic(OMP算法的Matlab实现)通过正交匹配追踪算法从随机测量值中恢复信号文献:(列举很详细)中国压缩传感资源(ChinaCompressiveSensingResources)(简单的Review)CompressiveSensing(SP算法)Subspacepursuitforcompressivesens
- 关于一些图像的期刊与会议和小波压缩感知CS
SRT字符不够
图像基础知识图像处理
图像的分辨率主要指的是空间分辨率,即图像的像素密度以及单位面积的像素尺度,它描述了一幅图像中所包含细节的多少。分辨率越高,图像的细节越丰富,包含的信息含量就越多。图像的空间分辨率首先受图像传感器和成像设备的制约,现有的CCD(Charge-coupledDevice,电荷耦合元件)或CMOS(ComplementaryMetalOxideSemiconductor,互补金属氧化物半导体)传感器单元
- 压缩感知——革新数据采集的科学魔法
superdont
计算机视觉人工智能算法计算机视觉opencv系统地学习Pythonpython机器学习
引言:在数字时代,数据以及数据的收集和处理无处不在。压缩感知(CompressedSensing,CS)是一种新兴的数学框架,它挑战了我们传统上对数据采集和压缩的看法,给医学图像、天文观测、环境监测等领域带来了颠覆性的影响。但到底什么是压缩感知,它又为何如此重要呢?本文将为你深入浅出地解释。压缩感知压缩感知(CS)与传统数据压缩的差异:传统信息论告诉我们,数据被采集后通常需要进行压缩以便于存储和传
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 压缩感知进阶 有关稀疏矩阵
还可以吧有点纯纯的
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!上一篇《初识压缩感知CompressiveSensing》中我们已经讲过了压缩感知的作用和基本想法,涉及的领域,本文通过学习陶哲轩对compressivesensing(CS)的课程,对压缩感知做进一步理解,针对
- 压缩感知模型总结
安之少年
高光谱图像采样方式压缩感知信息压缩图像识别
压缩感知采样方式以及模型总结——学习笔记Paper1:RankMinimizationforSnapshotCompressiveImaging研究现状采样方式WNNM与SCI模型非局部相似利用WNNM低秩约束构造模型Paper2:Tensornon-locallow-rankregularizationforrecoveringcompressedhyperspectralimages,2017
- 压缩感知(Compressed Sensing,CS)的基础知识
superdont
计算机视觉计算机视觉人工智能算法opencv矩阵python图像处理
压缩感知(CompressedSensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算法完整重构出原始图像。压缩感知和传统的图像异同点压缩感知和传统的图像获取相比,在获取图像和原始图像方面具有以下异同点:相同点重构目标:
- 【信道估计】基于压缩感知双向中继信道估计附Matlab代码
前程算法matlab屋
信号处理matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要在本文中,我们提出了一种基于压缩感知(CS)的双向中继信道估计方法。该方法利用CS理论中的稀疏表示
- 数学建模之数据预处理-------数据异常值的处理
阑梦清川
数学建模数学建模
1.数据集成:把不同类型的数据转换成统一的类型;,即格式的统一化;2.数据规约:包括数据降维,降数据,数据压缩当不同数据相关性很大时,我们采用降维的方法;当数据的相关性很小时,我们采用降数据的方法数据降维的主成分分析即PCA,如上图所显示的那样,即旋转坐标轴,x轴上的数据波动范围比较大,而y轴上数据的波动范围比较小,我们便把二维降成一维。降数据主要采用分层抽样,简单随机抽样;数据压缩包括压缩感知,
- 重建传播网络并识别隐藏来源
ones~
传染病论文集网络
1.摘要我们从数据中揭示复杂网络结构和动态的能力,对于理解和控制复杂系统中的集体动态至关重要。尽管在这一领域已有近期进展,但如何从有限的时间序列中重建具有随机动态过程的网络仍然是一个突出问题。在这里,我们开发了一个基于压缩感知的框架,用于重构发生随机传播动态的复杂网络。我们将这种方法应用于大量的模型和真实网络,发现可以从少量极化(二进制)数据中实现非均匀相互作用的完全重建,这是压缩感知的优点。此外
- 论文解读--Compressed Sensing for MIMO Radar - Algorithms and Performance
奔袭的算法工程师
论文解读雷达信号处理人工智能算法深度学习目标检测机器学习
MIMO雷达压缩感知-算法和性能摘要压缩感知技术使得利用雷达场景的稀疏性来潜在地提高系统性能成为可能。本文将压缩感知工具应用于MIMO雷达,在方位-距离-多普勒域重构场景。推导了雷达波形和发射、接收阵列的条件,使雷达传感矩阵具有小相干性和稀疏恢复成为可能。提出了理论性能界限,并通过数值模拟进行了验证。1介绍雷达领域两个相对较新的发展是MIMO(多输入多输出)雷达的发展[9],以及压缩感知在雷达信号
- 深度学习与神经网络-压缩感知(Compressive Sensing)学习(五)
浮生梦浮生
深度学习与神经网络机器学习人工智能压缩感知高斯矩阵稀疏性相关性
压缩感知(压缩传感,CompressiveSensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D.Donoho(美国科学院院士)、E.Candes(Ridgelet,Curvelet创始人)及华裔科学家T.Tao(2006年菲尔兹奖获得者)等人提出,自诞生之日起便极大地吸引了相关研究人员的关注。网站http://dsp.rice.edu/cs上可以获取大量相关的论文。有关压缩感知
- BART non-Cartesian 重建:并行成像 压缩感知
张哥coder
MRI磁共振重建matlab磁共振成像医学图像
本文主要使用并行成像和压缩感知方法实现non-CartesianMRI数据的重建。目录1自定义MRIkspacetrajectory2自定义该trajectory下的多通道MRI数据3使用NUFFT直接做欠采样数据的重建
- 压缩感知基本理论
飞大圣
通信感知一体化算法
压缩感知的基本思想是利用信号的稀疏性来降低采样数据量。具体来说,压缩感知假设信号可以表示为一个稀疏系数向量和一个原子字典的线性组合,其中原子字典是一组基函数或样本点,可以表示信号的各个部分。因此,压缩感知算法的任务是利用尽可能少的采样数据,同时从中提取出信号的稀疏系数向量,然后利用稀疏系数向量和原子字典进行信号重构。奈奎斯特采样定理:若要不失真的恢复模拟信号,采样频率不应小于模拟信号频谱中最高频率
- 压缩感知学习
摸鱼带师小弟
学习
对稀疏和稀疏矩阵的认识采样率80Mhz采样间隔12.5ns,样本数量为800个一帧时长800*12.5ns=10us频域间隔1/10us=0.1Mhz第一个点的频率是0第21个点的频率是2Mhz 在只考虑正半轴,也即400个点的情况下,分别让不同的频点取1,然后对其进行ifft变换,(信号在频域是稀疏的)最终可以得到稀疏矩阵,下图的左边为实部的时域稀疏矩阵,右边为虚部的时域稀疏矩阵%%clc;cl
- 基于压缩感知的磁共振成像重建算法研究
电气_空空
毕业设计matlab仿真算法人工智能毕业设计matlab
摘要压缩感知的磁共振成像重建算法主要应用在医学临床行业,临床诊断都会运用到压缩感知的磁共振成像重建算法系统或仪器。更高效率和更高精度的压缩感知的磁共振成像重建算法一直是研究的热点。在医院的临床医学中,压缩感知的磁共振成像重建算法随处可见,因为其相比其他的控制方式而言,运行稳定且控制精度较高等优势,最重要的是压缩感知的磁共振成像重建算法在成像质量等方面具有很好的优势。随着自动控制技术和微电子技术的不
- L1-L2范数最小化问题-迭代收缩算法
weixin_30408165
matlabpython人工智能
L1-L2范数最小化问题-迭代收缩算法涉及L1-L2范数的机器学习问题非常常见,例如我们遇到的去噪、稀疏表示和压缩感知。一般而言,这类问题可以表示为:\[\min_{\bf{z}}||{\bf{z}}||_0\\\text{subjectto:}~\frac{1}{2}||{\bf{x}}-{\bf{A}}{\bf{z}}||_2^2\leq\epsilon\]由于\(L_0\)范数存在着NP难的
- 【笔记】压缩感知(1)
flyersong_bupt
lab滤噪算法
1、字典概念http://blog.csdn.net/jbb0523/article/details/45099655这个博客把冗余字典与完备字典讲的很好。完备字典是线性无关的,冗余字典是线性相关的(但也是有完整的基的)。故而使用完备字典的表示是唯一的,使用冗余字典的表示不是唯一的。这个博客还讲了使用冗余字典进行匹配追踪(MP)中,字典原子不是相互正交的向量。因此上面减去投影计算残差的过程中会再次
- 关于压缩感知(CS)技术的个人实践
tsinghua_clannad
信号与系统
关于压缩感知(CS)技术的个人实践文章目录关于压缩感知(CS)技术的个人实践概论与理论原理信号的压缩原理信号的重构原理MATLAB解决一维信号的压缩重构MATLAB解决二维图像的压缩重构概论与理论原理压缩感知技术,英文名为CompressiveSensing,简称CS理论。该理论指出当信号满足稀疏性或可压缩条件时,可以在远低于Nyquist速率的情况下采样信号,通过求解非线性最优化问题实现对信号的
- 43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构
顶呱呱程序
matlab工程应用matlab重构算法
基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构,分别有,(1)基于L1正则的最小二乘算法-L1_Ls,(2)软阈值迭代算法(ISTA),(3)快速的迭代阈值收缩算法(FISTA),(4)平滑L0范数的重建算法(SL0算法),(5)正交匹配追踪算法(OMP),(6)压缩感知重构算法之压缩采样匹配追踪
- 压缩感知重构算法之基追踪(Basis Pursuit, BP)
Anstrue
语音信号处理与matlab编程
原文地址:http://blog.csdn.net/jbb0523/article/details/51986554#comments在此对作者表示深深的谢意!!除匹配追踪类贪婪迭代算法之外,压缩感知重构算法另一大类就是凸优化算法或最优化逼近方法,这类方法通过将非凸问题转化为凸问题求解找到信号的逼近,其中最常用的方法就是基追踪(BasisPursuit,BP),该方法提出使用l1范数替代l0范数来
- 压缩感知重构算法之基追踪(Basis Pursuit, BP).基追踪并不能称为一个具体的算法,而是一种最优化准则,可以有很多实现方式,我认为指的是L0可以变为L1的准则
I_AM_V_MAN
CSforConvexRelaxation
基追踪(basispursuit)算法是一种用来求解未知参量L1范数最小化的等式约束问题的算法。基追踪是通常在信号处理中使用的一种对已知系数稀疏化的手段。将优化问题中的L0范数转化为L1范数的求解就是基追踪的基本思想。比如我原先有一个优化问题:min||x||_0(就是L0范数的最小值)subjecttoy=Ax。这个||x||_0,就是表示x中有多少个非零元素;那么我们要求min||x||_0,
- 43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解。
顶呱呱程序
matlab工程应用重构压缩重构感知稀疏优化软阈值迭代算法正交匹配追踪算法matlab
基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构,分别有,(1)基于L1正则的最小二乘算法-L1_Ls,(2)软阈值迭代算法(ISTA),(3)快速的迭代阈值收缩算法(FISTA),(4)平滑L0范数的重建算法(SL0算法),(5)正交匹配追踪算法(OMP),(6)压缩感知重构算法之压缩采样匹配追踪
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发